These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel. Aziz AH; Eckstein K; Ferguson VL; Bryant SJ J Tissue Eng Regen Med; 2019 Jun; 13(6):946-959. PubMed ID: 30793536 [TBL] [Abstract][Full Text] [Related]
7. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model. Lim CT; Ren X; Afizah MH; Tarigan-Panjaitan S; Yang Z; Wu Y; Chian KS; Mikos AG; Hui JH Tissue Eng Part A; 2013 Aug; 19(15-16):1852-61. PubMed ID: 23517496 [TBL] [Abstract][Full Text] [Related]
8. 3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications. Bracaglia LG; Messina M; Winston S; Kuo CY; Lerman M; Fisher JP Biomacromolecules; 2017 Nov; 18(11):3802-3811. PubMed ID: 28976740 [TBL] [Abstract][Full Text] [Related]
9. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Steinmetz NJ; Aisenbrey EA; Westbrook KK; Qi HJ; Bryant SJ Acta Biomater; 2015 Jul; 21():142-53. PubMed ID: 25900444 [TBL] [Abstract][Full Text] [Related]
10. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. Holland TA; Bodde EW; Baggett LS; Tabata Y; Mikos AG; Jansen JA J Biomed Mater Res A; 2005 Oct; 75(1):156-67. PubMed ID: 16052490 [TBL] [Abstract][Full Text] [Related]
11. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957 [TBL] [Abstract][Full Text] [Related]
12. Versatile design of hydrogel-based scaffolds with manipulated pore structure for hard-tissue regeneration. Kim W; Lee H; Kim Y; Choi CH; Lee D; Hwang H; Kim G Biomed Mater; 2016 Sep; 11(5):055002. PubMed ID: 27586518 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Cao Y; Zhang H; Qiu M; Zheng Y; Shi X; Yang J Int J Biol Macromol; 2024 Feb; 257(Pt 1):128593. PubMed ID: 38056750 [TBL] [Abstract][Full Text] [Related]
15. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907 [TBL] [Abstract][Full Text] [Related]
16. Novel chitosan hydrogel formed by ethylene glycol chitosan, 1,6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation. Chen Z; Zhao M; Liu K; Wan Y; Li X; Feng G J Mater Sci Mater Med; 2014 Aug; 25(8):1903-13. PubMed ID: 24805882 [TBL] [Abstract][Full Text] [Related]
18. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. Zhang W; Lian Q; Li D; Wang K; Hao D; Bian W; Jin Z Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():10-5. PubMed ID: 25491954 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]