These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26001981)

  • 21. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.
    Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S
    J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A semi-analytical method for simulating matrix diffusion in numerical transport models.
    Falta RW; Wang W
    J Contam Hydrol; 2017 Feb; 197():39-49. PubMed ID: 28108037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffusion of solutes from depleting sources into and out of finite low-permeability zones.
    Yang M; McCurley KL; Annable MD; Jawitz JW
    J Contam Hydrol; 2019 Feb; 221():127-134. PubMed ID: 30777404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new parameter estimation method for solute transport in a column.
    Wang Q; Zhan H; Tang Z
    Ground Water; 2013; 51(5):714-22. PubMed ID: 23796232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.
    Wildemeersch S; Jamin P; Orban P; Hermans T; Klepikova M; Nguyen F; Brouyère S; Dassargues A
    J Contam Hydrol; 2014 Nov; 169():90-99. PubMed ID: 25201639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of the mass transfer model for describing nonequilibrium transport of HOCs through natural geosorbents.
    Rahman M; Amiri F; Worch E
    Water Res; 2003 Nov; 37(19):4673-84. PubMed ID: 14568054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applicability of the dual-domain model to nonaggregated porous media.
    Liu Y; Kitanidis PK
    Ground Water; 2012; 50(6):927-34. PubMed ID: 22276634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer.
    Goeppert N; Goldscheider N; Berkowitz B
    Water Res; 2020 Jul; 178():115755. PubMed ID: 32348930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.
    Lee J; Rolle M; Kitanidis PK
    J Contam Hydrol; 2018 May; 212():41-54. PubMed ID: 28943098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils?
    Garrard RM; Zhang Y; Wei S; Sun H; Qian J
    Ground Water; 2017 Nov; 55(6):857-870. PubMed ID: 28692785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass-transfer impact on solute mobility in porous media: A new mobile-immobile model.
    Masciopinto C; Passarella G
    J Contam Hydrol; 2018 Aug; 215():21-28. PubMed ID: 29980376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation.
    Parker JC; Kim U
    J Contam Hydrol; 2015 Nov; 182():157-72. PubMed ID: 26398901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implications of the change in confinement status of a heterogeneous aquifer for scale-dependent dispersion and mass-transfer processes.
    Pedretti D; Molinari A; Fallico C; Guzzi S
    J Contam Hydrol; 2016 Oct; 193():86-95. PubMed ID: 27639976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative characterization of solute transport in fractures with different surface roughness based on ten Barton profiles.
    Hu Y; Xu W; Zhan L; Li J; Chen Y
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):13534-13549. PubMed ID: 32026373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anomalous transport dependence on Péclet number, porous medium heterogeneity, and a temporally varying velocity field.
    Nissan A; Berkowitz B
    Phys Rev E; 2019 Mar; 99(3-1):033108. PubMed ID: 30999549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media.
    Sun H; Zhang Y; Chen W; Reeves DM
    J Contam Hydrol; 2014 Feb; 157():47-58. PubMed ID: 24299661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analytic model for transient anomalous diffusion with highly persistent correlations.
    Carnaffan S; Kawai R
    Phys Rev E; 2019 Jun; 99(6-1):062120. PubMed ID: 31330708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges.
    Simmons CT; Fenstemaker TR; Sharp JM
    J Contam Hydrol; 2001 Nov; 52(1-4):245-75. PubMed ID: 11695743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.