BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26002718)

  • 21. Expansion of the TLO gene family enhances the virulence of Candida species.
    Flanagan PR; Fletcher J; Boyle H; Sulea R; Moran GP; Sullivan DJ
    PLoS One; 2018; 13(7):e0200852. PubMed ID: 30028853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity.
    Sandini S; La Valle R; De Bernardis F; Macrì C; Cassone A
    Cell Microbiol; 2007 May; 9(5):1223-38. PubMed ID: 17217426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis.
    Moran G; Stokes C; Thewes S; Hube B; Coleman DC; Sullivan D
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3363-82. PubMed ID: 15470115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Candida dubliniensis: ten years on.
    Sullivan DJ; Moran GP; Coleman DC
    FEMS Microbiol Lett; 2005 Dec; 253(1):9-17. PubMed ID: 16213674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Candida albicans scavenges host zinc via Pra1 during endothelial invasion.
    Citiulo F; Jacobsen ID; Miramón P; Schild L; Brunke S; Zipfel P; Brock M; Hube B; Wilson D
    PLoS Pathog; 2012; 8(6):e1002777. PubMed ID: 22761575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Infection of chick chorioallantoic membrane (CAM) as a model for invasive hyphal growth and pathogenesis of Candida albicans.
    Gow NA; Knox Y; Munro CA; Thompson WD
    Med Mycol; 2003 Aug; 41(4):331-8. PubMed ID: 12964726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis.
    Staib P; Morschhäuser J
    Mol Microbiol; 2005 Jan; 55(2):637-52. PubMed ID: 15659176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Candida albicans.
    Wilson D
    Trends Microbiol; 2019 Feb; 27(2):188-189. PubMed ID: 30551845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling.
    Hossain S; Veri AO; Cowen LE
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.
    Bahn YS; Sundstrom P
    J Bacteriol; 2001 May; 183(10):3211-23. PubMed ID: 11325951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans.
    Liu X; Nie X; Ding Y; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):793-800. PubMed ID: 20929924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.
    Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlamydospore formation in Candida albicans and Candida dubliniensis--an enigmatic developmental programme.
    Staib P; Morschhäuser J
    Mycoses; 2007 Jan; 50(1):1-12. PubMed ID: 17302741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NDR Kinase Cbk1 Downregulates the Transcriptional Repressor Nrg1 through the mRNA-Binding Protein Ssd1 in Candida albicans.
    Lee HJ; Kim JM; Kang WK; Yang H; Kim JY
    Eukaryot Cell; 2015 Jul; 14(7):671-83. PubMed ID: 26002720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functions of CaPhm7 in the regulation of ion homeostasis, drug tolerance, filamentation and virulence in Candida albicans.
    Jiang L; Pan H
    BMC Microbiol; 2018 Jun; 18(1):49. PubMed ID: 29866033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mRNA export factor Sac3 maintains nuclear homeostasis and regulates cytoskeleton organization in Candida albicans.
    Xiao C; Yu Q; Zhang B; Li J; Zhang D; Li M
    Future Microbiol; 2018 Mar; 13():283-296. PubMed ID: 29436239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction.
    Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C
    Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen.
    Liu H
    Int J Med Microbiol; 2002 Oct; 292(5-6):299-311. PubMed ID: 12452278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRZ1, a target of the calcineurin pathway in Candida albicans.
    Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D
    Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Candida morphogenesis and host-pathogen interactions.
    Whiteway M; Oberholzer U
    Curr Opin Microbiol; 2004 Aug; 7(4):350-7. PubMed ID: 15358253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.