These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26002774)

  • 1. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine.
    Chi M; Yi B; Oh S; Park DJ; Sung JH; Park S
    Biomed Microdevices; 2015; 17(3):9966. PubMed ID: 26002774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype.
    Wang L; Murthy SK; Fowle WH; Barabino GA; Carrier RL
    Biomaterials; 2009 Dec; 30(36):6825-34. PubMed ID: 19766306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression.
    Kim SH; Chi M; Yi B; Kim SH; Oh S; Kim Y; Park S; Sung JH
    Integr Biol (Camb); 2014 Dec; 6(12):1122-31. PubMed ID: 25200891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption.
    Kim SH; Lee JW; Choi I; Kim YC; Lee JB; Sung JH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7220-8. PubMed ID: 24245233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies.
    Tan HY; Trier S; Rahbek UL; Dufva M; Kutter JP; Andresen TL
    PLoS One; 2018; 13(5):e0197101. PubMed ID: 29746551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of tight junction disruption and immune response modulation in a miniaturized Caco-2/U937 coculture-based in vitro model of the human intestinal barrier.
    Ramadan Q; Jing L
    Biomed Microdevices; 2016 Feb; 18(1):11. PubMed ID: 26809386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow.
    Kim HJ; Huh D; Hamilton G; Ingber DE
    Lab Chip; 2012 Jun; 12(12):2165-74. PubMed ID: 22434367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numb modulates the paracellular permeability of intestinal epithelial cells through regulating apical junctional complex assembly and myosin light chain phosphorylation.
    Yang Y; Chen L; Tian Y; Ye J; Liu Y; Song L; Pan Q; He Y; Chen W; Peng Z; Wang R
    Exp Cell Res; 2013 Dec; 319(20):3214-25. PubMed ID: 23872314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation.
    Costello CM; Hongpeng J; Shaffiey S; Yu J; Jain NK; Hackam D; March JC
    Biotechnol Bioeng; 2014 Jun; 111(6):1222-32. PubMed ID: 24390638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Establishment and assessment of Caco-2 cell in vitro absorption model].
    Zha LY; Luo HJ; Deng H; Chu XW
    Nan Fang Yi Ke Da Xue Xue Bao; 2009 Mar; 29(3):548-50. PubMed ID: 19304551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basement membrane formation and re-distribution of the beta 1 integrins in a human intestinal co-culture system.
    Vachon PH; Durand J; Beaulieu JF
    Anat Rec; 1993 Apr; 235(4):567-76. PubMed ID: 8465988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestine-on-chip device increases ECM remodeling inducing faster epithelial cell differentiation.
    De Gregorio V; Corrado B; Sbrescia S; Sibilio S; Urciuolo F; Netti PA; Imparato G
    Biotechnol Bioeng; 2020 Feb; 117(2):556-566. PubMed ID: 31598957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic gut-on-a-chip with three-dimensional villi structure.
    Shim KY; Lee D; Han J; Nguyen NT; Park S; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):37. PubMed ID: 28451924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices.
    Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML
    Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
    Halldorsson S; Lucumi E; Gómez-Sjöberg R; Fleming RMT
    Biosens Bioelectron; 2015 Jan; 63():218-231. PubMed ID: 25105943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Model of Tumor Microenvironment on Microfluidic Platform.
    Chung M; Ahn J; Son K; Kim S; Jeon NL
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28544639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun Scaffold for Biomimic Culture of Caco-2 Cell Monolayer as an
    Hu M; Li Y; Huang J; Wang X; Han J
    ACS Appl Bio Mater; 2021 Feb; 4(2):1340-1349. PubMed ID: 35014485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation.
    Kim HJ; Ingber DE
    Integr Biol (Camb); 2013 Sep; 5(9):1130-40. PubMed ID: 23817533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes.
    Wang L; Murthy SK; Barabino GA; Carrier RL
    Biomaterials; 2010 Oct; 31(29):7586-98. PubMed ID: 20643478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.