BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26002774)

  • 1. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine.
    Chi M; Yi B; Oh S; Park DJ; Sung JH; Park S
    Biomed Microdevices; 2015; 17(3):9966. PubMed ID: 26002774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype.
    Wang L; Murthy SK; Fowle WH; Barabino GA; Carrier RL
    Biomaterials; 2009 Dec; 30(36):6825-34. PubMed ID: 19766306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression.
    Kim SH; Chi M; Yi B; Kim SH; Oh S; Kim Y; Park S; Sung JH
    Integr Biol (Camb); 2014 Dec; 6(12):1122-31. PubMed ID: 25200891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption.
    Kim SH; Lee JW; Choi I; Kim YC; Lee JB; Sung JH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7220-8. PubMed ID: 24245233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies.
    Tan HY; Trier S; Rahbek UL; Dufva M; Kutter JP; Andresen TL
    PLoS One; 2018; 13(5):e0197101. PubMed ID: 29746551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of tight junction disruption and immune response modulation in a miniaturized Caco-2/U937 coculture-based in vitro model of the human intestinal barrier.
    Ramadan Q; Jing L
    Biomed Microdevices; 2016 Feb; 18(1):11. PubMed ID: 26809386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow.
    Kim HJ; Huh D; Hamilton G; Ingber DE
    Lab Chip; 2012 Jun; 12(12):2165-74. PubMed ID: 22434367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numb modulates the paracellular permeability of intestinal epithelial cells through regulating apical junctional complex assembly and myosin light chain phosphorylation.
    Yang Y; Chen L; Tian Y; Ye J; Liu Y; Song L; Pan Q; He Y; Chen W; Peng Z; Wang R
    Exp Cell Res; 2013 Dec; 319(20):3214-25. PubMed ID: 23872314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation.
    Costello CM; Hongpeng J; Shaffiey S; Yu J; Jain NK; Hackam D; March JC
    Biotechnol Bioeng; 2014 Jun; 111(6):1222-32. PubMed ID: 24390638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Establishment and assessment of Caco-2 cell in vitro absorption model].
    Zha LY; Luo HJ; Deng H; Chu XW
    Nan Fang Yi Ke Da Xue Xue Bao; 2009 Mar; 29(3):548-50. PubMed ID: 19304551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basement membrane formation and re-distribution of the beta 1 integrins in a human intestinal co-culture system.
    Vachon PH; Durand J; Beaulieu JF
    Anat Rec; 1993 Apr; 235(4):567-76. PubMed ID: 8465988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestine-on-chip device increases ECM remodeling inducing faster epithelial cell differentiation.
    De Gregorio V; Corrado B; Sbrescia S; Sibilio S; Urciuolo F; Netti PA; Imparato G
    Biotechnol Bioeng; 2020 Feb; 117(2):556-566. PubMed ID: 31598957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic gut-on-a-chip with three-dimensional villi structure.
    Shim KY; Lee D; Han J; Nguyen NT; Park S; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):37. PubMed ID: 28451924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices.
    Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML
    Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
    Halldorsson S; Lucumi E; Gómez-Sjöberg R; Fleming RMT
    Biosens Bioelectron; 2015 Jan; 63():218-231. PubMed ID: 25105943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Model of Tumor Microenvironment on Microfluidic Platform.
    Chung M; Ahn J; Son K; Kim S; Jeon NL
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28544639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun Scaffold for Biomimic Culture of Caco-2 Cell Monolayer as an
    Hu M; Li Y; Huang J; Wang X; Han J
    ACS Appl Bio Mater; 2021 Feb; 4(2):1340-1349. PubMed ID: 35014485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation.
    Kim HJ; Ingber DE
    Integr Biol (Camb); 2013 Sep; 5(9):1130-40. PubMed ID: 23817533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes.
    Wang L; Murthy SK; Barabino GA; Carrier RL
    Biomaterials; 2010 Oct; 31(29):7586-98. PubMed ID: 20643478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.