BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26002784)

  • 1. The evolution of biofilm-forming Wrinkly Spreaders in static microcosms and drip-fed columns selects for subtle differences in wrinkleality and fitness.
    Udall YC; Deeni Y; Hapca SM; Raikes D; Spiers AJ
    FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 26002784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation.
    Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penetrating the air-liquid interface is the key to colonization and wrinkly spreader fitness.
    Jerdan R; Kuśmierska A; Petric M; Spiers AJ
    Microbiology (Reading); 2019 Oct; 165(10):1061-1074. PubMed ID: 31436522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three biofilm types produced by a model pseudomonad are differentiated by structural characteristics and fitness advantage.
    Koza A; Jerdan R; Cameron S; Spiers AJ
    Microbiology (Reading); 2020 Aug; 166(8):707-716. PubMed ID: 32520698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrinkly-Spreader fitness in the two-dimensional agar plate microcosm: maladaptation, compensation and ecological success.
    Spiers AJ
    PLoS One; 2007 Aug; 2(8):e740. PubMed ID: 17710140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Getting Wrinkly Spreaders to demonstrate evolution in schools.
    Spiers AJ
    Trends Microbiol; 2014 Jun; 22(6):301-3. PubMed ID: 24881493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental modification and niche construction: developing O2 gradients drive the evolution of the Wrinkly Spreader.
    Koza A; Moshynets O; Otten W; Spiers AJ
    ISME J; 2011 Apr; 5(4):665-73. PubMed ID: 20962880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanistic explanation linking adaptive mutation, niche change, and fitness advantage for the wrinkly spreader.
    Spiers AJ
    Int J Evol Biol; 2014; 2014():675432. PubMed ID: 24551477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose.
    Spiers AJ; Bohannon J; Gehrig SM; Rainey PB
    Mol Microbiol; 2003 Oct; 50(1):15-27. PubMed ID: 14507360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity.
    Spiers AJ; Rainey PB
    Microbiology (Reading); 2005 Sep; 151(Pt 9):2829-2839. PubMed ID: 16151196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25.
    Koza A; Hallett PD; Moon CD; Spiers AJ
    Microbiology (Reading); 2009 May; 155(Pt 5):1397-1406. PubMed ID: 19383709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eDNA, Amyloid Fibers and Membrane Vesicles Identified in
    Moshynets OV; Pokholenko I; Iungin O; Potters G; Spiers AJ
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499433
    [No Abstract]   [Full Text] [Related]  

  • 13. Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface.
    Ardré M; Dufour D; Rainey PB
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31085696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens.
    Pentz JT; Lind PA
    PLoS Genet; 2021 Aug; 17(8):e1009722. PubMed ID: 34351900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates.
    Ude S; Arnold DL; Moon CD; Timms-Wilson T; Spiers AJ
    Environ Microbiol; 2006 Nov; 8(11):1997-2011. PubMed ID: 17014498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness.
    Spiers AJ; Kahn SG; Bohannon J; Travisano M; Rainey PB
    Genetics; 2002 May; 161(1):33-46. PubMed ID: 12019221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insights into the Effects of Several Environmental Parameters on the Relative Fitness of a Numerically Dominant Class of Evolved Niche Specialist.
    Kuśmierska A; Spiers AJ
    Int J Evol Biol; 2016; 2016():4846565. PubMed ID: 28101396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation.
    Ferguson GC; Bertels F; Rainey PB
    Genetics; 2013 Dec; 195(4):1319-35. PubMed ID: 24077305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype.
    Goymer P; Kahn SG; Malone JG; Gehrig SM; Spiers AJ; Rainey PB
    Genetics; 2006 Jun; 173(2):515-26. PubMed ID: 16624907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel evolution of small colony variants in Burkholderia cenocepacia biofilms.
    Cooper VS; Staples RK; Traverse CC; Ellis CN
    Genomics; 2014 Dec; 104(6 Pt A):447-52. PubMed ID: 25263109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.