These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 26002784)
1. The evolution of biofilm-forming Wrinkly Spreaders in static microcosms and drip-fed columns selects for subtle differences in wrinkleality and fitness. Udall YC; Deeni Y; Hapca SM; Raikes D; Spiers AJ FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 26002784 [TBL] [Abstract][Full Text] [Related]
2. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation. Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292 [TBL] [Abstract][Full Text] [Related]
3. Penetrating the air-liquid interface is the key to colonization and wrinkly spreader fitness. Jerdan R; Kuśmierska A; Petric M; Spiers AJ Microbiology (Reading); 2019 Oct; 165(10):1061-1074. PubMed ID: 31436522 [TBL] [Abstract][Full Text] [Related]
4. Three biofilm types produced by a model pseudomonad are differentiated by structural characteristics and fitness advantage. Koza A; Jerdan R; Cameron S; Spiers AJ Microbiology (Reading); 2020 Aug; 166(8):707-716. PubMed ID: 32520698 [TBL] [Abstract][Full Text] [Related]
5. Wrinkly-Spreader fitness in the two-dimensional agar plate microcosm: maladaptation, compensation and ecological success. Spiers AJ PLoS One; 2007 Aug; 2(8):e740. PubMed ID: 17710140 [TBL] [Abstract][Full Text] [Related]
6. Getting Wrinkly Spreaders to demonstrate evolution in schools. Spiers AJ Trends Microbiol; 2014 Jun; 22(6):301-3. PubMed ID: 24881493 [TBL] [Abstract][Full Text] [Related]
7. Environmental modification and niche construction: developing O2 gradients drive the evolution of the Wrinkly Spreader. Koza A; Moshynets O; Otten W; Spiers AJ ISME J; 2011 Apr; 5(4):665-73. PubMed ID: 20962880 [TBL] [Abstract][Full Text] [Related]
8. A mechanistic explanation linking adaptive mutation, niche change, and fitness advantage for the wrinkly spreader. Spiers AJ Int J Evol Biol; 2014; 2014():675432. PubMed ID: 24551477 [TBL] [Abstract][Full Text] [Related]
9. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Spiers AJ; Bohannon J; Gehrig SM; Rainey PB Mol Microbiol; 2003 Oct; 50(1):15-27. PubMed ID: 14507360 [TBL] [Abstract][Full Text] [Related]
10. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Spiers AJ; Rainey PB Microbiology (Reading); 2005 Sep; 151(Pt 9):2829-2839. PubMed ID: 16151196 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25. Koza A; Hallett PD; Moon CD; Spiers AJ Microbiology (Reading); 2009 May; 155(Pt 5):1397-1406. PubMed ID: 19383709 [TBL] [Abstract][Full Text] [Related]
12. eDNA, Amyloid Fibers and Membrane Vesicles Identified in Moshynets OV; Pokholenko I; Iungin O; Potters G; Spiers AJ Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499433 [No Abstract] [Full Text] [Related]
13. Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface. Ardré M; Dufour D; Rainey PB J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31085696 [TBL] [Abstract][Full Text] [Related]
14. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens. Pentz JT; Lind PA PLoS Genet; 2021 Aug; 17(8):e1009722. PubMed ID: 34351900 [TBL] [Abstract][Full Text] [Related]
15. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Ude S; Arnold DL; Moon CD; Timms-Wilson T; Spiers AJ Environ Microbiol; 2006 Nov; 8(11):1997-2011. PubMed ID: 17014498 [TBL] [Abstract][Full Text] [Related]
16. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Spiers AJ; Kahn SG; Bohannon J; Travisano M; Rainey PB Genetics; 2002 May; 161(1):33-46. PubMed ID: 12019221 [TBL] [Abstract][Full Text] [Related]
17. New Insights into the Effects of Several Environmental Parameters on the Relative Fitness of a Numerically Dominant Class of Evolved Niche Specialist. Kuśmierska A; Spiers AJ Int J Evol Biol; 2016; 2016():4846565. PubMed ID: 28101396 [TBL] [Abstract][Full Text] [Related]
18. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Ferguson GC; Bertels F; Rainey PB Genetics; 2013 Dec; 195(4):1319-35. PubMed ID: 24077305 [TBL] [Abstract][Full Text] [Related]
19. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype. Goymer P; Kahn SG; Malone JG; Gehrig SM; Spiers AJ; Rainey PB Genetics; 2006 Jun; 173(2):515-26. PubMed ID: 16624907 [TBL] [Abstract][Full Text] [Related]
20. Parallel evolution of small colony variants in Burkholderia cenocepacia biofilms. Cooper VS; Staples RK; Traverse CC; Ellis CN Genomics; 2014 Dec; 104(6 Pt A):447-52. PubMed ID: 25263109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]