These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26002903)

  • 1. Dual Roles of Capsular Extracellular Polymeric Substances in Photocatalytic Inactivation of Escherichia coli: Comparison of E. coli BW25113 and Isogenic Mutants.
    Huang G; Xia D; An T; Ng TW; Yip HY; Li G; Zhao H; Wong PK
    Appl Environ Microbiol; 2015 Aug; 81(15):5174-83. PubMed ID: 26002903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic studies of the role of fatty acid and coenzyme A in photocatalytic inactivation of Escherichia coli.
    Gao M; An T; Li G; Nie X; Yip HY; Zhao H; Wong PK
    Water Res; 2012 Sep; 46(13):3951-7. PubMed ID: 22691444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation.
    Wang X; Lim TT
    Water Res; 2013 Aug; 47(12):4148-58. PubMed ID: 23562562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic inactivation of E. coli with a mesoporous TiO2 coated film using the film adhesion method.
    Kim DS; Kwak SY
    Environ Sci Technol; 2009 Jan; 43(1):148-51. PubMed ID: 19209598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system.
    Xiong P; Hu J
    Water Res; 2013 Sep; 47(13):4547-55. PubMed ID: 23764604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of in situ resultant H₂O₂ in the visible-light-driven photocatalytic inactivation of E. coli using natural sphalerite: a genetic study.
    Shi H; Huang G; Xia D; Ng TW; Yip HY; Li G; An T; Zhao H; Wong P
    J Phys Chem B; 2015 Feb; 119(7):3104-11. PubMed ID: 25602917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids.
    Joost U; Juganson K; Visnapuu M; Mortimer M; Kahru A; Nõmmiste E; Joost U; Kisand V; Ivask A
    J Photochem Photobiol B; 2015 Jan; 142():178-85. PubMed ID: 25545332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role and synergistic effect of the light irradiation and H2O2 in photocatalytic inactivation of Escherichia coli.
    Ng TW; An T; Li G; Ho WK; Yip HY; Zhao H; Wong PK
    J Photochem Photobiol B; 2015 Aug; 149():164-71. PubMed ID: 26083904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation.
    Ouyang K; Dai K; Walker SL; Huang Q; Yin X; Cai P
    Sci Rep; 2016 May; 6():25702. PubMed ID: 27161821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas aeruginosa inactivation mechanism is affected by capsular extracellular polymeric substances reactivity with chlorine and monochloramine.
    Xue Z; Hessler CM; Panmanee W; Hassett DJ; Seo Y
    FEMS Microbiol Ecol; 2013 Jan; 83(1):101-11. PubMed ID: 22809489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis.
    Kim S; Ghafoor K; Lee J; Feng M; Hong J; Lee DU; Park J
    Water Res; 2013 Sep; 47(13):4403-11. PubMed ID: 23764591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of shear on initial bacterial attachment in slow flowing systems.
    Wang H; Sodagari M; Ju LK; Zhang Newby BM
    Colloids Surf B Biointerfaces; 2013 Sep; 109():32-9. PubMed ID: 23603040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria.
    Tong T; Shereef A; Wu J; Binh CT; Kelly JJ; Gaillard JF; Gray KA
    Environ Sci Technol; 2013; 47(21):12486-95. PubMed ID: 24083465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic-based inactivation of E. coli by UV 282 nm XeBr Excilamp.
    Matafonova GG; Batoev VB; Linden KG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1670-6. PubMed ID: 23947705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic inactivation of Flavobacterium and E. coli in water by a continuous stirred tank reactor (CSTR) fed with suspended/immobilised TiO2 medium.
    Cohen-Yaniv V; Narkis N; Armon R
    Water Sci Technol; 2008; 58(1):247-52. PubMed ID: 18653961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible light induced photocatalytic inactivation of bacteria by modified titanium dioxide films on organic polymers.
    Sadowski R; Strus M; Buchalska M; Heczko PB; Macyk W
    Photochem Photobiol Sci; 2015 Mar; 14(3):514-9. PubMed ID: 25254352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted disinfection of E. coli via bioconjugation to photoreactive TiO2.
    Ye L; Pelton R; Brook MA; Filipe CD; Wang H; Brovko L; Griffiths M
    Bioconjug Chem; 2013 Mar; 24(3):448-55. PubMed ID: 23425106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films.
    Alrousan DM; Dunlop PS; McMurray TA; Byrne JA
    Water Res; 2009 Jan; 43(1):47-54. PubMed ID: 19007965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media.
    Du M; Wang L; Ebrahimi A; Chen G; Shu S; Zhu K; Shen C; Li B; Wang G
    Ecotoxicol Environ Saf; 2021 May; 218():112291. PubMed ID: 33957420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms.
    Marugán J; van Grieken R; Pablos C; Sordo C
    Water Res; 2010 Feb; 44(3):789-96. PubMed ID: 19906399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.