BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26003082)

  • 1. Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca(2+) concentration and inhibition of adenosine metabolism in spinal astrocytes.
    Eguchi R; Akao S; Otsuguro K; Yamaguchi S; Ito S
    J Pharmacol Sci; 2015 May; 128(1):47-53. PubMed ID: 26003082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibroblast growth factor 2 modulates extracellular purine metabolism by upregulating ecto-5'-nucleotidase and adenosine deaminase in cultured rat spinal cord astrocytes.
    Eguchi R; Yamaguchi S; Otsuguro K
    J Pharmacol Sci; 2019 Feb; 139(2):98-104. PubMed ID: 30598426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions.
    Sinclair CJ; LaRivière CG; Young JD; Cass CE; Baldwin SA; Parkinson FE
    J Neurochem; 2000 Oct; 75(4):1528-38. PubMed ID: 10987833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine uptake-dependent C6 cell growth inhibition.
    Ohkubo S; Nagata K; Nakahata N
    Eur J Pharmacol; 2007 Dec; 577(1-3):35-43. PubMed ID: 17878054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions.
    Parkinson FE; Sinclair CJ; Othman T; Haughey NJ; Geiger JD
    Neuropharmacology; 2002 Oct; 43(5):836-46. PubMed ID: 12384169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat.
    Otsuguro K; Tomonari Y; Otsuka S; Yamaguchi S; Kon Y; Ito S
    Neuropharmacology; 2015 Oct; 97():160-70. PubMed ID: 26066576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleoside transporter expression and function in cultured mouse astrocytes.
    Peng L; Huang R; Yu AC; Fung KY; Rathbone MP; Hertz L
    Glia; 2005 Oct; 52(1):25-35. PubMed ID: 15892125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium.
    Stout C; Charles A
    Glia; 2003 Sep; 43(3):265-73. PubMed ID: 12898705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of apoptosis induced by purine nucleosides in astrocytes.
    Di Iorio P; Kleywegt S; Ciccarelli R; Traversa U; Andrew CM; Crocker CE; Werstiuk ES; Rathbone MP
    Glia; 2002 May; 38(3):179-90. PubMed ID: 11968056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression for enzymes and transporters involved in regulating adenosine and inosine levels in rat forebrain neurons, astrocytes and C6 glioma cells.
    Parkinson FE; Ferguson J; Zamzow CR; Xiong W
    J Neurosci Res; 2006 Sep; 84(4):801-8. PubMed ID: 16862552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine in the spinal cord and periphery: release and regulation of pain.
    Sawynok J; Liu XJ
    Prog Neurobiol; 2003 Apr; 69(5):313-40. PubMed ID: 12787573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibroblast growth factor 2 upregulates ecto-5'-nucleotidase and adenosine deaminase via MAPK pathways in cultured rat spinal cord astrocytes.
    Eguchi R; Kitano T; Otsuguro KI
    Purinergic Signal; 2020 Dec; 16(4):519-527. PubMed ID: 33025426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing Extracellular Ca
    Diez R; Richardson MJE; Wall MJ
    Front Neural Circuits; 2017; 11():75. PubMed ID: 29066955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxynitrite treatment reduces adenosine uptake via the equilibrative nucleoside transporter in rat astrocytes.
    Tanaka A; Nishida K; Okuda H; Nishiura T; Higashi Y; Fujimoto S; Nagasawa K
    Neurosci Lett; 2011 Jul; 498(1):52-6. PubMed ID: 21575674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine and inosine release during hypoxia in the isolated spinal cord of neonatal rats.
    Takahashi T; Otsuguro K; Ohta T; Ito S
    Br J Pharmacol; 2010 Dec; 161(8):1806-16. PubMed ID: 20735412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine opposes thrombin-induced inhibition of intercellular calcium wave in corneal endothelial cells.
    D'hondt C; Srinivas SP; Vereecke J; Himpens B
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1518-27. PubMed ID: 17389480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the neurokinin-1 receptor in rat spinal astrocytes induces Ca2+ release from IP3-sensitive Ca2+ stores and extracellular Ca2+ influx through TRPC3.
    Miyano K; Morioka N; Sugimoto T; Shiraishi S; Uezono Y; Nakata Y
    Neurochem Int; 2010 Dec; 57(8):923-34. PubMed ID: 20933035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecto-AMP deaminase blunts the ATP-derived adenosine A2A receptor facilitation of acetylcholine release at rat motor nerve endings.
    Magalhães-Cardoso MT; Pereira MF; Oliveira L; Ribeiro JA; Cunha RA; Correia-de-Sá P
    J Physiol; 2003 Jun; 549(Pt 2):399-408. PubMed ID: 12679375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.
    Smolenski RT; Kalsi KK; Zych M; Kochan Z; Yacoub MH
    J Mol Cell Cardiol; 1998 Mar; 30(3):673-83. PubMed ID: 9515042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astrocytes and neurons: different roles in regulating adenosine levels.
    Parkinson FE; Xiong W; Zamzow CR
    Neurol Res; 2005 Mar; 27(2):153-60. PubMed ID: 15829178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.