These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 26003087)
1. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Zhang B; Zou J; Rensing NR; Yang M; Wong M Neurobiol Dis; 2015 Aug; 80():70-9. PubMed ID: 26003087 [TBL] [Abstract][Full Text] [Related]
2. Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Zhang B; Zou J; Han L; Rensing N; Wong M Epilepsia; 2016 Aug; 57(8):1317-25. PubMed ID: 27263494 [TBL] [Abstract][Full Text] [Related]
3. Cerebral vascular and blood brain-barrier abnormalities in a mouse model of epilepsy and tuberous sclerosis complex. Guo D; Zhang B; Han L; Rensing NR; Wong M Epilepsia; 2024 Feb; 65(2):483-496. PubMed ID: 38049961 [TBL] [Abstract][Full Text] [Related]
4. Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Jansen LA; Uhlmann EJ; Crino PB; Gutmann DH; Wong M Epilepsia; 2005 Dec; 46(12):1871-80. PubMed ID: 16393152 [TBL] [Abstract][Full Text] [Related]
5. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Zeng LH; Xu L; Gutmann DH; Wong M Ann Neurol; 2008 Apr; 63(4):444-53. PubMed ID: 18389497 [TBL] [Abstract][Full Text] [Related]
6. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Zeng LH; Rensing NR; Zhang B; Gutmann DH; Gambello MJ; Wong M Hum Mol Genet; 2011 Feb; 20(3):445-54. PubMed ID: 21062901 [TBL] [Abstract][Full Text] [Related]
7. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Zou J; Zhang B; Gutmann DH; Wong M Epilepsia; 2017 Dec; 58(12):2053-2063. PubMed ID: 29023667 [TBL] [Abstract][Full Text] [Related]
8. Intermittent dosing of rapamycin maintains antiepileptogenic effects in a mouse model of tuberous sclerosis complex. Rensing N; Han L; Wong M Epilepsia; 2015 Jul; 56(7):1088-97. PubMed ID: 26122303 [TBL] [Abstract][Full Text] [Related]
9. The natural history and treatment of epilepsy in a murine model of tuberous sclerosis. Erbayat-Altay E; Zeng LH; Xu L; Gutmann DH; Wong M Epilepsia; 2007 Aug; 48(8):1470-6. PubMed ID: 17484760 [TBL] [Abstract][Full Text] [Related]
10. The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Zhang B; Zou J; Han L; Beeler B; Friedman JL; Griffin E; Piao YS; Rensing NR; Wong M Epilepsia; 2018 Sep; 59(9):1796-1806. PubMed ID: 30079598 [TBL] [Abstract][Full Text] [Related]
11. Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Zeng LH; Ouyang Y; Gazit V; Cirrito JR; Jansen LA; Ess KC; Yamada KA; Wozniak DF; Holtzman DM; Gutmann DH; Wong M Neurobiol Dis; 2007 Nov; 28(2):184-96. PubMed ID: 17714952 [TBL] [Abstract][Full Text] [Related]
12. Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of Tuberous Sclerosis Complex. Zeng LH; Bero AW; Zhang B; Holtzman DM; Wong M Neurobiol Dis; 2010 Mar; 37(3):764-71. PubMed ID: 20045054 [TBL] [Abstract][Full Text] [Related]
13. Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex. Zhang B; Guo D; Han L; Rensing N; Satoh A; Wong M Neurobiol Dis; 2020 Feb; 134():104615. PubMed ID: 31605778 [TBL] [Abstract][Full Text] [Related]
14. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Wong M; Ess KC; Uhlmann EJ; Jansen LA; Li W; Crino PB; Mennerick S; Yamada KA; Gutmann DH Ann Neurol; 2003 Aug; 54(2):251-6. PubMed ID: 12891680 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Curatolo P Pediatr Neurol; 2015 Mar; 52(3):281-9. PubMed ID: 25591831 [TBL] [Abstract][Full Text] [Related]
16. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits. Feliciano DM; Lin TV; Hartman NW; Bartley CM; Kubera C; Hsieh L; Lafourcade C; O'Keefe RA; Bordey A Int J Dev Neurosci; 2013 Nov; 31(7):667-78. PubMed ID: 23485365 [TBL] [Abstract][Full Text] [Related]
17. Impaired astrocytic gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Xu L; Zeng LH; Wong M Neurobiol Dis; 2009 May; 34(2):291-9. PubMed ID: 19385061 [TBL] [Abstract][Full Text] [Related]
18. Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. Zhang B; McDaniel SS; Rensing NR; Wong M PLoS One; 2013; 8(2):e57445. PubMed ID: 23437388 [TBL] [Abstract][Full Text] [Related]
19. Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain(123). Crowell B; Lee GH; Nikolaeva I; Dal Pozzo V; D'Arcangelo G eNeuro; 2015; 2(6):. PubMed ID: 26693177 [TBL] [Abstract][Full Text] [Related]
20. Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Carson RP; Van Nielen DL; Winzenburger PA; Ess KC Neurobiol Dis; 2012 Jan; 45(1):369-80. PubMed ID: 21907282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]