These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 26003176)
1. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria. García-Mantrana I; Monedero V; Haros M Plant Foods Hum Nutr; 2015 Sep; 70(3):269-74. PubMed ID: 26003176 [TBL] [Abstract][Full Text] [Related]
2. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. García-Mantrana I; Yebra MJ; Haros M; Monedero V Int J Food Microbiol; 2016 Jan; 216():18-24. PubMed ID: 26384212 [TBL] [Abstract][Full Text] [Related]
3. Effect of enzymatic treatment on phytate content and mineral bioacessability in soy drink. Theodoropoulos VCT; Turatti MA; Greiner R; Macedo GA; Pallone JAL Food Res Int; 2018 Jun; 108():68-73. PubMed ID: 29735102 [TBL] [Abstract][Full Text] [Related]
4. Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697. Tamayo-Ramos JA; Sanz-Penella JM; Yebra MJ; Monedero V; Haros M Appl Environ Microbiol; 2012 Jul; 78(14):5013-5. PubMed ID: 22582052 [TBL] [Abstract][Full Text] [Related]
5. Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability. Sanz-Penella JM; Frontela C; Ros G; Martinez C; Monedero V; Haros M J Agric Food Chem; 2012 Nov; 60(47):11787-92. PubMed ID: 23151205 [TBL] [Abstract][Full Text] [Related]
7. Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. Haros M; Carlsson NG; Almgren A; Larsson-Alminger M; Sandberg AS; Andlid T Int J Food Microbiol; 2009 Sep; 135(1):7-14. PubMed ID: 19674804 [TBL] [Abstract][Full Text] [Related]
8. Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. Haros M; Bielecka M; Honke J; Sanz Y Int J Food Microbiol; 2007 Jun; 117(1):76-84. PubMed ID: 17462768 [TBL] [Abstract][Full Text] [Related]
9. Selection of phytate-degrading human bifidobacteria and application in whole wheat dough fermentation. Palacios MC; Haros M; Rosell CM; Sanz Y Food Microbiol; 2008 Feb; 25(1):169-76. PubMed ID: 17993391 [TBL] [Abstract][Full Text] [Related]
10. Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread. García-Mantrana I; Monedero V; Haros M Food Chem; 2015 Jul; 178():267-75. PubMed ID: 25704711 [TBL] [Abstract][Full Text] [Related]
11. Phytase activity from Lactobacillus spp. in calcium-fortified soymilk. Tang AL; Wilcox G; Walker KZ; Shah NP; Ashton JF; Stojanovska L J Food Sci; 2010 Aug; 75(6):M373-6. PubMed ID: 20722939 [TBL] [Abstract][Full Text] [Related]
12. Use of Lactobacilli in Cereal-Legume Fermentation and as Potential Probiotics towards Phytate Hydrolysis. Amritha GK; Venkateswaran G Probiotics Antimicrob Proteins; 2018 Dec; 10(4):647-653. PubMed ID: 28936766 [TBL] [Abstract][Full Text] [Related]
13. Assessment of iron bioavailability in whole wheat bread by addition of phytase-producing bifidobacteria. Sanz-Penella JM; Laparra JM; Sanz Y; Haros M J Agric Food Chem; 2012 Mar; 60(12):3190-5. PubMed ID: 22369315 [TBL] [Abstract][Full Text] [Related]
14. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives. Nam SJ; Kim YO; Ko TK; Kang JK; Chun KH; Auh JH; Lee CS; Lee IK; Park S; Oh BC J Microbiol Biotechnol; 2014 Oct; 24(10):1413-20. PubMed ID: 25112322 [TBL] [Abstract][Full Text] [Related]
15. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Sandberg AS Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732 [TBL] [Abstract][Full Text] [Related]
16. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of Hirvonen J; Liljavirta J; Saarinen MT; Lehtinen MJ; Ahonen I; Nurminen P J Agric Food Chem; 2019 Oct; 67(41):11396-11402. PubMed ID: 31537068 [TBL] [Abstract][Full Text] [Related]
17. Supplementation of alkaline phytase (Ds11) in whole-wheat bread reduces phytate content and improves mineral solubility. Park YJ; Park J; Park KH; Oh BC; Auh JH J Food Sci; 2011 Aug; 76(6):C791-4. PubMed ID: 21623782 [TBL] [Abstract][Full Text] [Related]
18. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation. Anastasio M; Pepe O; Cirillo T; Palomba S; Blaiotta G; Villani F J Food Sci; 2010; 75(1):M28-35. PubMed ID: 20492182 [TBL] [Abstract][Full Text] [Related]
19. Degradation of phytate in the gut of pigs--pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved. Schlemmer U; Jany KD; Berk A; Schulz E; Rechkemmer G Arch Tierernahr; 2001; 55(4):255-80. PubMed ID: 12357589 [TBL] [Abstract][Full Text] [Related]
20. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study. Reale A; Mannina L; Tremonte P; Sobolev AP; Succi M; Sorrentino E; Coppola R J Agric Food Chem; 2004 Oct; 52(20):6300-5. PubMed ID: 15453704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]