BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26003176)

  • 1. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria.
    García-Mantrana I; Monedero V; Haros M
    Plant Foods Hum Nutr; 2015 Sep; 70(3):269-74. PubMed ID: 26003176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread.
    García-Mantrana I; Yebra MJ; Haros M; Monedero V
    Int J Food Microbiol; 2016 Jan; 216():18-24. PubMed ID: 26384212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of enzymatic treatment on phytate content and mineral bioacessability in soy drink.
    Theodoropoulos VCT; Turatti MA; Greiner R; Macedo GA; Pallone JAL
    Food Res Int; 2018 Jun; 108():68-73. PubMed ID: 29735102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697.
    Tamayo-Ramos JA; Sanz-Penella JM; Yebra MJ; Monedero V; Haros M
    Appl Environ Microbiol; 2012 Jul; 78(14):5013-5. PubMed ID: 22582052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability.
    Sanz-Penella JM; Frontela C; Ros G; Martinez C; Monedero V; Haros M
    J Agric Food Chem; 2012 Nov; 60(47):11787-92. PubMed ID: 23151205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytate reduction in bran-enriched bread by phytase-producing bifidobacteria.
    Sanz-Penella JM; Tamayo-Ramos JA; Sanz Y; Haros M
    J Agric Food Chem; 2009 Nov; 57(21):10239-44. PubMed ID: 19817458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential.
    Haros M; Carlsson NG; Almgren A; Larsson-Alminger M; Sandberg AS; Andlid T
    Int J Food Microbiol; 2009 Sep; 135(1):7-14. PubMed ID: 19674804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697.
    Haros M; Bielecka M; Honke J; Sanz Y
    Int J Food Microbiol; 2007 Jun; 117(1):76-84. PubMed ID: 17462768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of phytate-degrading human bifidobacteria and application in whole wheat dough fermentation.
    Palacios MC; Haros M; Rosell CM; Sanz Y
    Food Microbiol; 2008 Feb; 25(1):169-76. PubMed ID: 17993391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread.
    García-Mantrana I; Monedero V; Haros M
    Food Chem; 2015 Jul; 178():267-75. PubMed ID: 25704711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytase activity from Lactobacillus spp. in calcium-fortified soymilk.
    Tang AL; Wilcox G; Walker KZ; Shah NP; Ashton JF; Stojanovska L
    J Food Sci; 2010 Aug; 75(6):M373-6. PubMed ID: 20722939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Lactobacilli in Cereal-Legume Fermentation and as Potential Probiotics towards Phytate Hydrolysis.
    Amritha GK; Venkateswaran G
    Probiotics Antimicrob Proteins; 2018 Dec; 10(4):647-653. PubMed ID: 28936766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of iron bioavailability in whole wheat bread by addition of phytase-producing bifidobacteria.
    Sanz-Penella JM; Laparra JM; Sanz Y; Haros M
    J Agric Food Chem; 2012 Mar; 60(12):3190-5. PubMed ID: 22369315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives.
    Nam SJ; Kim YO; Ko TK; Kang JK; Chun KH; Auh JH; Lee CS; Lee IK; Park S; Oh BC
    J Microbiol Biotechnol; 2014 Oct; 24(10):1413-20. PubMed ID: 25112322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of
    Hirvonen J; Liljavirta J; Saarinen MT; Lehtinen MJ; Ahonen I; Nurminen P
    J Agric Food Chem; 2019 Oct; 67(41):11396-11402. PubMed ID: 31537068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supplementation of alkaline phytase (Ds11) in whole-wheat bread reduces phytate content and improves mineral solubility.
    Park YJ; Park J; Park KH; Oh BC; Auh JH
    J Food Sci; 2011 Aug; 76(6):C791-4. PubMed ID: 21623782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation.
    Anastasio M; Pepe O; Cirillo T; Palomba S; Blaiotta G; Villani F
    J Food Sci; 2010; 75(1):M28-35. PubMed ID: 20492182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of phytate in the gut of pigs--pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved.
    Schlemmer U; Jany KD; Berk A; Schulz E; Rechkemmer G
    Arch Tierernahr; 2001; 55(4):255-80. PubMed ID: 12357589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study.
    Reale A; Mannina L; Tremonte P; Sobolev AP; Succi M; Sorrentino E; Coppola R
    J Agric Food Chem; 2004 Oct; 52(20):6300-5. PubMed ID: 15453704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.