These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26003449)

  • 21. Similarity of muscle synergies extracted from the lower limb including the deep muscles between level and uphill treadmill walking.
    Saito A; Tomita A; Ando R; Watanabe K; Akima H
    Gait Posture; 2018 Jan; 59():134-139. PubMed ID: 29031138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults.
    Hurt CP; Rosenblatt N; Crenshaw JR; Grabiner MD
    Gait Posture; 2010 Apr; 31(4):461-4. PubMed ID: 20185314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asymmetric walking on an incline affects aspects of positive mechanical work asymmetrically.
    Hurt CP; Kuhman DJ; Reed WR; Baumann A; Jiang W; Marsh K
    J Biomech; 2022 May; 136():111083. PubMed ID: 35413513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking.
    Nagano H; Begg RK; Sparrow WA; Taylor S
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):962-8. PubMed ID: 21719169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion.
    Canton S; MacLellan MJ
    Hum Mov Sci; 2018 Feb; 57():314-323. PubMed ID: 28958710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the passive dynamics of walking on ground, tied-belt and split-belt treadmills, and via the Gait Enhancing Mobile Shoe (GEMS).
    Handzić I; Reed KB
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650509. PubMed ID: 24187324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of heel lifting on transtibial amputee gait before and after treadmill walking: a case study.
    Yeung LF; Leung AK; Zhang M; Lee WC
    Prosthet Orthot Int; 2013 Aug; 37(4):317-23. PubMed ID: 23124990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of arm swing amplitude and lower-limb asymmetry on gait stability.
    Hill A; Nantel J
    PLoS One; 2019; 14(12):e0218644. PubMed ID: 31860669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Instability Resistance Training Decreases Motor Noise During Challenging Walking Tasks in Older Adults: A 10-Week Double-Blinded RCT.
    Eckardt N; Rosenblatt NJ
    Front Aging Neurosci; 2019; 11():32. PubMed ID: 30873017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle activation patterns are bilaterally linked during split-belt treadmill walking in humans.
    Maclellan MJ; Ivanenko YP; Massaad F; Bruijn SM; Duysens J; Lacquaniti F
    J Neurophysiol; 2014 Apr; 111(8):1541-52. PubMed ID: 24478155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relation between frontal plane center of mass position stability and foot elevation during obstacle crossing.
    Yamagata M; Tateuchi H; Pataky T; Shimizu I; Ichihashi N
    J Biomech; 2021 Feb; 116():110219. PubMed ID: 33482594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke.
    Brouwer B; Parvataneni K; Olney SJ
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):729-34. PubMed ID: 19664866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait analysis on force treadmill in children: comparison with results from ground-based force platforms.
    Tesio L; Malloggi C; Portinaro NM; Catino L; Lovecchio N; Rota V
    Int J Rehabil Res; 2017 Dec; 40(4):315-324. PubMed ID: 28719477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle synergies are similar when typically developing children walk on a treadmill at different speeds and slopes.
    Rozumalski A; Steele KM; Schwartz MH
    J Biomech; 2017 Nov; 64():112-119. PubMed ID: 28943157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults.
    Sivakumaran S; Schinkel-Ivy A; Masani K; Mansfield A
    Hum Mov Sci; 2018 Feb; 57():366-373. PubMed ID: 28987772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of interventions on normalizing step width during self-paced dual-belt treadmill walking with virtual reality, a randomised controlled trial.
    Oude Lansink ILB; van Kouwenhove L; Dijkstra PU; Postema K; Hijmans JM
    Gait Posture; 2017 Oct; 58():121-125. PubMed ID: 28772131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Treadmill-belt width, but not feedback from the lower visual field, influences the noise characteristics of step width time series.
    Desmet DM; Westbrook AD; Grabiner MD
    J Biomech; 2020 Aug; 109():109943. PubMed ID: 32807305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.