BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 26003697)

  • 1. Simultaneous determination of four trace level endocrine disrupting compounds in environmental samples by solid-phase microextraction coupled with HPLC.
    Wang L; Zhang Z; Xu X; Zhang D; Wang F; Zhang L
    Talanta; 2015 Sep; 142():97-103. PubMed ID: 26003697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid/liquid phase microextraction of five bisphenol-type endocrine disrupting chemicals by using a hollow fiber reinforced with graphene oxide nanoribbons, and determination by HPLC-PDA.
    Han X; Chen J; Qiu H; Shi YP
    Mikrochim Acta; 2019 May; 186(6):375. PubMed ID: 31127364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow-fiber-supported liquid-phase microextraction using an ionic liquid as the extractant for the pre-concentration of bisphenol A, 17-β-estradiol, estrone and diethylstilbestrol from water samples with HPLC detection.
    Zou Y; Zhang Z; Shao X; Chen Y; Wu X; Yang L; Zhu J; Zhang D
    Water Sci Technol; 2014; 69(5):1028-35. PubMed ID: 24622552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of endocrine-disrupting compounds in water by carbon nanotubes solid-phase microextraction fiber coupled online with high performance liquid chromatography.
    Ma X; Li Q; Yuan D
    Talanta; 2011 Sep; 85(4):2212-7. PubMed ID: 21872080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection.
    Jiang Y; Tang T; Cao Z; Shi G; Zhou T
    J Sep Sci; 2015 Jun; 38(12):2158-66. PubMed ID: 25864862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive determination of bisphenol A and bisphenol F in canned food using a solid-phase microextraction fibre coated with single-walled carbon nanotubes before GC/MS.
    Rastkari N; Ahmadkhaniha R; Yunesian M; Baleh LJ; Mesdaghinia A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Oct; 27(10):1460-8. PubMed ID: 20658403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography.
    Feng J; Sun M; Bu Y; Luo C
    Anal Bioanal Chem; 2015 Sep; 407(23):7025-35. PubMed ID: 26220716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of magnetic amino-functionalized microporous organic network composites for magnetic solid phase extraction of endocrine disrupting chemicals from water, beverage bottle and juice samples.
    Du ZD; Cui YY; Yang CX; Yan XP
    Talanta; 2020 Jan; 206():120179. PubMed ID: 31514881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging.
    Wang L; Zhang D; Xu X; Zhang L
    Food Chem; 2016 Apr; 197(Pt A):754-60. PubMed ID: 26617013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCX based solid phase extraction combined with liquid chromatography tandem mass spectrometry for the simultaneous determination of 31 endocrine-disrupting compounds in surface water of Shanghai.
    Zhang HC; Yu XJ; Yang WC; Peng JF; Xu T; Yin DQ; Hu XL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2998-3004. PubMed ID: 21930438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of bisphenol-type endocrine disrupting compounds in food-contact recycled-paper materials by focused ultrasonic solid-liquid extraction and ultra performance liquid chromatography-high resolution mass spectrometry.
    Pérez-Palacios D; Fernández-Recio MÁ; Moreta C; Tena MT
    Talanta; 2012 Sep; 99():167-74. PubMed ID: 22967537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino modified multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental samples.
    Hu C; Chen B; He M; Hu B
    J Chromatogr A; 2013 Jul; 1300():165-72. PubMed ID: 23726076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a hollow porous molecularly imprinted polymer using tetrabromobisphenol A as a dummy template and its application as SPE sorbent for determination of bisphenol A in tap water.
    Li J; Zhang X; Liu Y; Tong H; Xu Y; Liu S
    Talanta; 2013 Dec; 117():281-7. PubMed ID: 24209342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes reinforced hollow fiber solid phase microextraction for the determination of strychnine and brucine in urine.
    Song XY; Shi YP; Chen J
    Talanta; 2013 Nov; 116():188-94. PubMed ID: 24148391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-friendly alginate encapsulated magnetic graphene oxide beads for solid phase microextraction of endocrine disrupting compounds from water samples.
    Tasmia ; Shah J; Jan MR
    Ecotoxicol Environ Saf; 2020 Mar; 190():110099. PubMed ID: 31923752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced microextraction of endocrine disrupting chemicals adsorbed on airborne fine particulate matter with gas chromatography-tandem mass spectrometric analysis.
    Naing NN; Goh EXY; Lee HK
    J Chromatogr A; 2021 Jan; 1637():461828. PubMed ID: 33373795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective determination of estrogenic compounds in water by microextraction by packed sorbents and a molecularly imprinted polymer coupled with large volume injection-in-port-derivatization gas chromatography-mass spectrometry.
    Prieto A; Vallejo A; Zuloaga O; Paschke A; Sellergen B; Schillinger E; Schrader S; Möder M
    Anal Chim Acta; 2011 Oct; 703(1):41-51. PubMed ID: 21843673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of magnetic molecularly imprinted polymers for bisphenol A and its analogues and their application to the assay of bisphenol A in river water.
    Hiratsuka Y; Funaya N; Matsunaga H; Haginaka J
    J Pharm Biomed Anal; 2013 Mar; 75():180-5. PubMed ID: 23262418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of two endocrine disrupting compounds (EDCs), n-octylphenol and n-nonylphenol, in environmental waters.
    Villar-Navarro M; Ramos-Payán M; Fernández-Torres R; Callejón-Mochón M; Bello-López MÁ
    Sci Total Environ; 2013 Jan; 443():1-6. PubMed ID: 23178884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment and determination of octylphenol and nonylphenol in environmental water samples by solid-phase microextraction with carboxylated carbon nano-spheres coating prior to gas chromatography-mass spectrometry.
    Gong SX; Wang X; Li L; Wang ML; Zhao RS
    Anal Bioanal Chem; 2015 Nov; 407(29):8673-9. PubMed ID: 26302960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.