These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26003705)

  • 1. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose.
    Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.
    Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C
    J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics.
    Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Headspace sorptive extraction for the detection of combustion accelerants in fire debris.
    Cacho JI; Campillo N; Aliste M; Viñas P; Hernández-Córdoba M
    Forensic Sci Int; 2014 May; 238():26-32. PubMed ID: 24631666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.
    Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G
    Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose.
    Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GC-MS of ignitable liquids using solvent-desorbed SPME for automated analysis.
    Harris AC; Wheeler JF
    J Forensic Sci; 2003 Jan; 48(1):41-6. PubMed ID: 12570197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of volatiles in fire debris by combination of activated charcoal strips (ACS) and automated thermal desorption-gas chromatography-mass spectrometry (ATD/GC-MS).
    Martin Fabritius M; Broillet A; König S; Weinmann W
    Forensic Sci Int; 2018 Aug; 289():232-237. PubMed ID: 29908516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures.
    Baerncopf JM; McGuffin VL; Smith RW
    J Forensic Sci; 2011 Jan; 56(1):70-81. PubMed ID: 20854360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum.
    Waddell EE; Frisch-Daiello JL; Williams MR; Sigman ME
    J Forensic Sci; 2014 Sep; 59(5):1198-204. PubMed ID: 24962674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science.
    de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN
    Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of self-organizing feature maps to analyze the relationships between ignitable liquids and selected mass spectral ions.
    Frisch-Daiello JL; Williams MR; Waddell EE; Sigman ME
    Forensic Sci Int; 2014 Mar; 236():84-9. PubMed ID: 24529778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valid internal standard technique for arson detection based on gas chromatography-mass spectrometry.
    Salgueiro PA; Borges CM; Bettencourt da Silva RJ
    J Chromatogr A; 2012 Sep; 1257():189-94. PubMed ID: 22920302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contemporary Sample Preparation Methods for the Detection of Ignitable Liquids in Suspect Arson Cases.
    Bertsch W; Ren Q
    Forensic Sci Rev; 1999 Dec; 11(2):141-56. PubMed ID: 26255903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid GC-MS as a Screening Tool for Forensic Fire Debris Analysis.
    Capistran BA; Sisco E
    Forensic Chem; 2022 Sep; 30():. PubMed ID: 36733494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.