BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26003924)

  • 21. Molecular recognition of an RNA trafficking element by heterogeneous nuclear ribonucleoprotein A2.
    Landsberg MJ; Moran-Jones K; Smith R
    Biochemistry; 2006 Mar; 45(12):3943-51. PubMed ID: 16548521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mammalian heterogeneous ribonucleoprotein A1 and its constituent domains. Nucleic acid interaction, structural stability and self-association.
    Casas-Finet JR; Smith JD; Kumar A; Kim JG; Wilson SH; Karpel RL
    J Mol Biol; 1993 Feb; 229(4):873-89. PubMed ID: 8445653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of the human heterogeneous ribonucleoprotein A18 RNA-recognition motif.
    Coburn K; Melville Z; Aligholizadeh E; Roth BM; Varney KM; Carrier F; Pozharski E; Weber DJ
    Acta Crystallogr F Struct Biol Commun; 2017 Apr; 73(Pt 4):209-214. PubMed ID: 28368279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Both RNA-binding domains in heterogenous nuclear ribonucleoprotein A1 contribute toward single-stranded-RNA binding.
    Shamoo Y; Abdul-Manan N; Patten AM; Crawford JK; Pellegrini MC; Williams KR
    Biochemistry; 1994 Jul; 33(27):8272-81. PubMed ID: 7518244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1.
    Luo H; Chen Q; Chen J; Chen K; Shen X; Jiang H
    FEBS Lett; 2005 May; 579(12):2623-8. PubMed ID: 15862300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structure of the HIV-1 exon splicing silencer 3.
    Levengood JD; Rollins C; Mishler CH; Johnson CA; Miner G; Rajan P; Znosko BM; Tolbert BS
    J Mol Biol; 2012 Jan; 415(4):680-98. PubMed ID: 22154809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: from structural insights to post-transcriptional regulatory roles.
    Bekenstein U; Soreq H
    Mol Cell Neurosci; 2013 Sep; 56():436-46. PubMed ID: 23247072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 A resolution.
    Shamoo Y; Krueger U; Rice LM; Williams KR; Steitz TA
    Nat Struct Biol; 1997 Mar; 4(3):215-22. PubMed ID: 9164463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HnRNP A1 Alters the Structure of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation.
    Tolbert M; Morgan CE; Pollum M; Crespo-Hernández CE; Li ML; Brewer G; Tolbert BS
    J Mol Biol; 2017 Sep; 429(19):2841-2858. PubMed ID: 28625847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription.
    Paramasivam M; Membrino A; Cogoi S; Fukuda H; Nakagama H; Xodo LE
    Nucleic Acids Res; 2009 May; 37(9):2841-53. PubMed ID: 19282454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B.
    Expert-Bezançon A; Sureau A; Durosay P; Salesse R; Groeneveld H; Lecaer JP; Marie J
    J Biol Chem; 2004 Sep; 279(37):38249-59. PubMed ID: 15208309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing.
    Burd CG; Dreyfuss G
    EMBO J; 1994 Mar; 13(5):1197-204. PubMed ID: 7510636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino acid sequence of UP1, an hnRNP-derived single-stranded nucleic acid binding protein from calf thymus.
    Merrill BM; Lopresti MB; Stone KL; Williams KR
    Int J Pept Protein Res; 1987 Jan; 29(1):21-39. PubMed ID: 3032834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular protein hnRNP-A1 interacts with the 3'-end and the intergenic sequence of mouse hepatitis virus negative-strand RNA to form a ribonucleoprotein complex.
    Zhang X; Li HP; Xue W; Lai MM
    Adv Exp Med Biol; 1998; 440():227-34. PubMed ID: 9782285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures and RNA-binding properties of the RNA recognition motifs of heterogeneous nuclear ribonucleoprotein L: insights into its roles in alternative splicing regulation.
    Zhang W; Zeng F; Liu Y; Zhao Y; Lv H; Niu L; Teng M; Li X
    J Biol Chem; 2013 Aug; 288(31):22636-49. PubMed ID: 23782695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. hnRNP A1 and hnRNP H can collaborate to modulate 5' splice site selection.
    Fisette JF; Toutant J; Dugré-Brisson S; Desgroseillers L; Chabot B
    RNA; 2010 Jan; 16(1):228-38. PubMed ID: 19926721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. hnRNP A1 and hnRNP F modulate the alternative splicing of exon 11 of the insulin receptor gene.
    Talukdar I; Sen S; Urbano R; Thompson J; Yates JR; Webster NJ
    PLoS One; 2011; 6(11):e27869. PubMed ID: 22132154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polypyrimidine tract-binding protein and heterogeneous nuclear ribonucleoprotein A1 bind to human T-cell leukemia virus type 2 RNA regulatory elements.
    Black AC; Luo J; Watanabe C; Chun S; Bakker A; Fraser JK; Morgan JP; Rosenblatt JD
    J Virol; 1995 Nov; 69(11):6852-8. PubMed ID: 7474099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution.
    Jain N; Lin HC; Morgan CE; Harris ME; Tolbert BS
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2206-2211. PubMed ID: 28193894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins.
    Zhu J; Mayeda A; Krainer AR
    Mol Cell; 2001 Dec; 8(6):1351-61. PubMed ID: 11779509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.