These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26004120)

  • 1. Foot orthoses do not affect crank power output during maximal exercise on a cycle-ergometer.
    Yeo BK; Rouffet DM; Bonanno DR
    J Sci Med Sport; 2016 May; 19(5):368-72. PubMed ID: 26004120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force-velocity test on a stationary cycle ergometer: methodological recommendations.
    Rudsits BL; Hopkins WG; Hautier CA; Rouffet DM
    J Appl Physiol (1985); 2018 Apr; 124(4):831-839. PubMed ID: 29357495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiation of sprint cycling performance: the effects of a high-inertia ergometer warm-up.
    Munro LA; Stannard SR; Fink PW; Foskett A
    J Sports Sci; 2017 Jul; 35(14):1442-1450. PubMed ID: 27483990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of power output during ergometer and track cycling in adolescent cyclists.
    Nimmerichter A; Williams CA
    J Strength Cond Res; 2015 Apr; 29(4):1049-56. PubMed ID: 25353075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isovelocity vs. Isoinertial Sprint Cycling Tests for Power- and Torque-cadence Relationships.
    Kordi M; Folland J; Goodall S; Barratt P; Howatson G
    Int J Sports Med; 2019 Dec; 40(14):897-902. PubMed ID: 31590190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics.
    Bertucci W; Grappe F; Groslambert A
    J Appl Biomech; 2007 May; 23(2):87-92. PubMed ID: 17603128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of maximal power output in well-trained cyclists.
    Wackwitz TA; Minahan CL; King T; Du Plessis C; Andrews MH; Bellinger PM
    J Sports Sci; 2021 Jan; 39(1):84-90. PubMed ID: 32787678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hardness and posting of foot orthoses modify plantar contact area, plantar pressure, and perceived comfort when cycling.
    Bousie JA; Blanch P; McPoil TG; Vicenzino B
    J Sci Med Sport; 2018 Jul; 21(7):691-696. PubMed ID: 29191729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contoured in-shoe foot orthoses increase mid-foot plantar contact area when compared with a flat insert during cycling.
    Bousie JA; Blanch P; McPoil TG; Vicenzino B
    J Sci Med Sport; 2013 Jan; 16(1):60-4. PubMed ID: 22658845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of low- vs. high-cadence interval training on cycling performance.
    Paton CD; Hopkins WG; Cook C
    J Strength Cond Res; 2009 Sep; 23(6):1758-63. PubMed ID: 19675486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists.
    Sanderson DJ
    J Sports Sci; 1991; 9(2):191-203. PubMed ID: 1895355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-velocity profiles of track cyclists differ between seated and non-seated positions.
    Dwyer DB; Molaro C; Rouffet DM
    Sports Biomech; 2023 Apr; 22(4):621-632. PubMed ID: 35758132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a novel pedal design on maximal power output and mechanical efficiency in well-trained cyclists.
    Koninckx E; van Leemputte M; Hespel P
    J Sports Sci; 2008 Aug; 26(10):1015-23. PubMed ID: 18608832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of low- vs high-cadence interval training on the freely chosen cadence and performance in endurance-trained cyclists.
    Whitty AG; Murphy AJ; Coutts AJ; Watsford ML
    Appl Physiol Nutr Metab; 2016 Jun; 41(6):666-73. PubMed ID: 27175601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests.
    Gardner AS; Martin JC; Martin DT; Barras M; Jenkins DG
    Eur J Appl Physiol; 2007 Oct; 101(3):287-92. PubMed ID: 17562069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of cycling cadence on the phases of joint power, crank power, force and force effectiveness.
    Ettema G; Lorås H; Leirdal S
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e94-101. PubMed ID: 18178104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power output, cadence, and torque are similar between the forward standing and traditional sprint cycling positions.
    Merkes PFJ; Menaspà P; Abbiss CR
    Scand J Med Sci Sports; 2020 Jan; 30(1):64-73. PubMed ID: 31544261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.