These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26004120)

  • 21. Factors associated with the selection of the freely chosen cadence in non-cyclists.
    Whitty AG; Murphy AJ; Coutts AJ; Watsford ML
    Eur J Appl Physiol; 2009 Jul; 106(5):705-12. PubMed ID: 19430807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Indoor 16.1-km time-trial performance in cyclists aged 25- 63 years.
    Balmer J; Bird S; Davison R
    J Sports Sci; 2008 Jan; 26(1):57-62. PubMed ID: 17852672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in pedalling technique between road cyclists of different competitive levels.
    García-López J; Díez-Leal S; Ogueta-Alday A; Larrazabal J; Rodríguez-Marroyo JA
    J Sports Sci; 2016 Sep; 34(17):1619-26. PubMed ID: 26703374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists.
    Dorel S; Hautier CA; Rambaud O; Rouffet D; Van Praagh E; Lacour JR; Bourdin M
    Int J Sports Med; 2005 Nov; 26(9):739-46. PubMed ID: 16237619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of different aerodynamic time trial cycling positions on muscle activation and crank torque.
    Fintelman DM; Sterling M; Hemida H; Li FX
    Scand J Med Sci Sports; 2016 May; 26(5):528-34. PubMed ID: 25996563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial.
    Carpes FP; Rossato M; Faria IE; Bolli Mota C
    J Sports Med Phys Fitness; 2007 Mar; 47(1):51-7. PubMed ID: 17369798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of bicycle lean on maximal power output during sprint cycling.
    Wilkinson RD; Kram R
    J Biomech; 2021 Aug; 125():110595. PubMed ID: 34246911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Torque-velocity relationship during cycle ergometer sprints with and without toe clips.
    Capmal S; Vandewalle H
    Eur J Appl Physiol Occup Physiol; 1997; 76(4):375-9. PubMed ID: 9349655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences between sprint tests under laboratory and actual cycling conditions.
    Bertucci W; Taiar R; Grappe F
    J Sports Med Phys Fitness; 2005 Sep; 45(3):277-83. PubMed ID: 16230977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel submaximal cycle test to monitor fatigue and predict cycling performance.
    Lamberts RP; Swart J; Noakes TD; Lambert MI
    Br J Sports Med; 2011 Aug; 45(10):797-804. PubMed ID: 19622525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of pedaling cadence and power output on mechanomyographic amplitude and mean power frequency during submaximal cycle ergometry.
    Hendrix CR; Bull AJ; Housh TJ; Rana SR; Cramer JT; Beck TW; Weir JP; Malek MH; Mielke M
    Electromyogr Clin Neurophysiol; 2008; 48(5):195-201. PubMed ID: 18754528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of crank length and crank width on maximal hand cycling power and cadence.
    Krämer C; Hilker L; Böhm H
    Eur J Appl Physiol; 2009 Jul; 106(5):749-57. PubMed ID: 19434421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling.
    Bini RR; Dagnese F; Rocha E; Silveira MC; Carpes FP; Mota CB
    Eur J Sport Sci; 2016 Aug; 16(5):553-9. PubMed ID: 26783692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between cadence and power output effects on mechanical efficiency during sub maximal cycling exercises.
    Samozino P; Horvais N; Hintzy F
    Eur J Appl Physiol; 2006 May; 97(1):133-9. PubMed ID: 16450165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cycling performance and mechanical variables using a new prototype chainring.
    Belen L; Habrard M; Micallef JP; Perrey S; Le Gallais D
    Eur J Appl Physiol; 2007 Dec; 101(6):721-6. PubMed ID: 17768635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Saddle Height and Cadence Effects on the Physiological, Perceptual, and Affective Responses of Recreational Cyclists.
    Kruschewsky AB; Dellagrana RA; Rossato M; Ribeiro LFP; Lazzari CD; Diefenthaeler F
    Percept Mot Skills; 2018 Oct; 125(5):923-938. PubMed ID: 30016908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of bilateral asymmetry in cycling using a commercial instrumented crank system and instrumented pedals.
    Bini RR; Hume PA
    Int J Sports Physiol Perform; 2014 Sep; 9(5):876-81. PubMed ID: 24509507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variability in Laboratory vs. Field Testing of Peak Power, Torque, and Time of Peak Power Production Among Elite Bicycle Motocross Cyclists.
    Rylands LP; Roberts SJ; Hurst HT
    J Strength Cond Res; 2015 Sep; 29(9):2635-40. PubMed ID: 26313579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.