BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26004575)

  • 1. Skin transport of PEGylated poly(ε-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-β-cyclodextrin.
    Conte C; Costabile G; d'Angelo I; Pannico M; Musto P; Grassia G; Ialenti A; Tirino P; Miro A; Ungaro F; Quaglia F
    J Colloid Interface Sci; 2015 Sep; 454():112-20. PubMed ID: 26004575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer.
    Conte C; Ungaro F; Maglio G; Tirino P; Siracusano G; Sciortino MT; Leone N; Palma G; Barbieri A; Arra C; Mazzaglia A; Quaglia F
    J Control Release; 2013 Apr; 167(1):40-52. PubMed ID: 23298613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclodextrin-assisted assembly of PEGylated polyester nanoparticles decorated with folate.
    Conte C; Fotticchia I; Tirino P; Moret F; Pagano B; Gref R; Ungaro F; Reddi E; Giancola C; Quaglia F
    Colloids Surf B Biointerfaces; 2016 May; 141():148-157. PubMed ID: 26852098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoassemblies based on non-ionic amphiphilic cyclodextrin hosting Zn(II)-phthalocyanine and docetaxel: Design, physicochemical properties and intracellular effects.
    Conte C; Scala A; Siracusano G; Sortino G; Pennisi R; Piperno A; Miro A; Ungaro F; Sciortino MT; Quaglia F; Mazzaglia A
    Colloids Surf B Biointerfaces; 2016 Oct; 146():590-7. PubMed ID: 27424090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Nanoencapsulation of Sepiapterin within PEG-PCL Nanoparticles by Complexation with Triacetyl-Beta Cyclodextrin.
    Kuplennik N; Sosnik A
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31357400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma.
    Feng N; Wu P; Li Q; Mei Y; Shi S; Yu J; Xu J; Liu Y; Wang Y
    J Drug Target; 2008 Jul; 16(6):479-85. PubMed ID: 18604660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin.
    Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M
    Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional ZnPc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape.
    Tu J; Wang T; Shi W; Wu G; Tian X; Wang Y; Ge D; Ren L
    Biomaterials; 2012 Nov; 33(31):7903-14. PubMed ID: 22840227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology.
    Guo F; Guo D; Zhang W; Yan Q; Yang Y; Hong W; Yang G
    Eur J Pharm Sci; 2017 Mar; 99():328-336. PubMed ID: 28062259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flurbiprofen PLGA-PEG nanospheres: role of hydroxy-β-cyclodextrin on ex vivo human skin permeation and in vivo topical anti-inflammatory efficacy.
    Vega E; Egea MA; Garduño-Ramírez ML; García ML; Sánchez E; Espina M; Calpena AC
    Colloids Surf B Biointerfaces; 2013 Oct; 110():339-46. PubMed ID: 23743255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of poly(ethylene glycol)-b-poly(epsilon-caprolactone) copolymers with different Poly(ethylene glycol) contents for the preparation of PEG-coated nanoparticles.
    Hou J; Qian C; Zhang Y; Guo S
    J Biomed Nanotechnol; 2013 Feb; 9(2):231-7. PubMed ID: 23627049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro.
    Gou M; Zheng L; Peng X; Men K; Zheng X; Zeng S; Guo G; Luo F; Zhao X; Chen L; Wei Y; Qian Z
    Int J Pharm; 2009 Jun; 375(1-2):170-6. PubMed ID: 19427143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles.
    Xin H; Sha X; Jiang X; Chen L; Law K; Gu J; Chen Y; Wang X; Fang X
    Biomaterials; 2012 Feb; 33(5):1673-81. PubMed ID: 22133551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro skin permeation of monoolein nanoparticles containing hydroxypropyl beta-cyclodextrin/minoxidil complex.
    Kwon TK; Kim JC
    Int J Pharm; 2010 Jun; 392(1-2):268-73. PubMed ID: 20362653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties.
    Zhang W; Li Y; Liu L; Sun Q; Shuai X; Zhu W; Chen Y
    Biomacromolecules; 2010 May; 11(5):1331-8. PubMed ID: 20405912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use.
    Ricci-Júnior E; Marchetti JM
    Int J Pharm; 2006 Mar; 310(1-2):187-95. PubMed ID: 16442755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo.
    Du XJ; Wang JL; Liu WW; Yang JX; Sun CY; Sun R; Li HJ; Shen S; Luo YL; Ye XD; Zhu YH; Yang XZ; Wang J
    Biomaterials; 2015 Nov; 69():1-11. PubMed ID: 26275857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent.
    Parra A; Clares B; Rosselló A; Garduño-Ramírez ML; Abrego G; García ML; Calpena AC
    Int J Pharm; 2016 Mar; 501(1-2):10-7. PubMed ID: 26826569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines.
    Youm I; Youan BB
    Hear Res; 2013 Oct; 304():7-19. PubMed ID: 23747541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.