BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26004825)

  • 1. Automated high-content morphological analysis of muscle fiber histology.
    Miazaki M; Viana MP; Yang Z; Comin CH; Wang Y; da F Costa L; Xu X
    Comput Biol Med; 2015 Aug; 63():28-35. PubMed ID: 26004825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network approach to analyze cross-sections of muscle fibers in pathological images.
    Li Y; Yang Z; Wang Y; Cao X; Xu X
    Comput Biol Med; 2019 Jan; 104():97-104. PubMed ID: 30463027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach to detect and segment cytoplasm in muscle fiber images.
    Guo Y; Xu X; Wang Y; Yang Z; Wang Y; Xia S
    Microsc Res Tech; 2015 Jun; 78(6):508-18. PubMed ID: 25900156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.
    Guo Y; Xu X; Wang Y; Wang Y; Xia S; Yang Z
    Microsc Res Tech; 2014 Aug; 77(8):547-59. PubMed ID: 24777764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle.
    Reyes-Fernandez PC; Periou B; Decrouy X; Relaix F; Authier FJ
    Skelet Muscle; 2019 May; 9(1):15. PubMed ID: 31133066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.
    Smith LR; Barton ER
    Skelet Muscle; 2014; 4():21. PubMed ID: 25937889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An image processing approach to analyze morphological features of microscopic images of muscle fibers.
    Comin CH; Xu X; Wang Y; Costa Lda F; Yang Z
    Comput Med Imaging Graph; 2014 Dec; 38(8):803-14. PubMed ID: 25124286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MyoSight-semi-automated image analysis of skeletal muscle cross sections.
    Babcock LW; Hanna AD; Agha NH; Hamilton SL
    Skelet Muscle; 2020 Nov; 10(1):33. PubMed ID: 33198807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated muscle histopathology analysis using CellProfiler.
    Lau YS; Xu L; Gao Y; Han R
    Skelet Muscle; 2018 Oct; 8(1):32. PubMed ID: 30336774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semiautomated measurement of muscle fiber size using the Imaris software.
    Gilda JE; Ko JH; Elfassy AY; Tropp N; Parnis A; Ayalon B; Jhe W; Cohen S
    Am J Physiol Cell Physiol; 2021 Sep; 321(3):C615-C631. PubMed ID: 34319828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated image analysis of skeletal muscle fiber cross-sectional area.
    Mula J; Lee JD; Liu F; Yang L; Peterson CA
    J Appl Physiol (1985); 2013 Jan; 114(1):148-55. PubMed ID: 23139362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated segmentation and morphometrical analysis of muscle fiber images.
    Kim YJ; Brox T; Feiden W; Weickert J
    Cytometry A; 2007 Jan; 71(1):8-15. PubMed ID: 17211880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems.
    Wang YY; Sun YN; Lin CC; Ju MS
    Artif Intell Med; 2012 Mar; 54(3):189-200. PubMed ID: 22239996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of an automated computational method for skeletal muscle fibre morphometry analysis.
    Garton F; Seto JT; North KN; Yang N
    Neuromuscul Disord; 2010 Aug; 20(8):540-7. PubMed ID: 20638845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated segmentation of muscle fiber images using active contour models.
    Klemencic A; Kovacic S; Pernus F
    Cytometry; 1998 Aug; 32(4):317-26. PubMed ID: 9701401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated image segmentation method to analyse skeletal muscle cross section in exercise-induced regenerating myofibers.
    Rahmati M; Rashno A
    Sci Rep; 2021 Oct; 11(1):21327. PubMed ID: 34716401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool.
    Mayeuf-Louchart A; Hardy D; Thorel Q; Roux P; Gueniot L; Briand D; Mazeraud A; Bouglé A; Shorte SL; Staels B; Chrétien F; Duez H; Danckaert A
    Skelet Muscle; 2018 Aug; 8(1):25. PubMed ID: 30081940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning-based approach for fully automated segmentation and quantitative analysis of muscle fibers in pig skeletal muscle.
    Yao Z; Wo J; Zheng E; Yang J; Li H; Li X; Li J; Luo Y; Wang T; Fan Z; Zhan Y; Yang Y; Wu Z; Yin L; Meng F
    Meat Sci; 2024 Jul; 213():109506. PubMed ID: 38603965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse.
    Briguet A; Courdier-Fruh I; Foster M; Meier T; Magyar JP
    Neuromuscul Disord; 2004 Oct; 14(10):675-82. PubMed ID: 15351425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.
    Garbe CS; Buttgereit A; Schürmann S; Friedrich O
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):39-44. PubMed ID: 21908249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.