BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26004898)

  • 1. Cadmium-induced formation of sulphide and cadmium sulphide particles in the aquatic hyphomycete Heliscus lugdunensis.
    Dobritzsch D; Ganz P; Rother M; Ehrman J; Baumbach R; Miersch J
    J Trace Elem Med Biol; 2015; 31():92-7. PubMed ID: 26004898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium and heat response of the fungus Heliscus lugdunensis isolated from highly polluted and unpolluted areas.
    Miersch J; Grancharov K
    Amino Acids; 2008 Feb; 34(2):271-7. PubMed ID: 17297561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus.
    Jaeckel P; Krauss G; Menge S; Schierhorn A; Rücknagel P; Krauss GJ
    Biochem Biophys Res Commun; 2005 Jul; 333(1):150-5. PubMed ID: 15939401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution.
    Raj R; Dalei K; Chakraborty J; Das S
    J Colloid Interface Sci; 2016 Jan; 462():166-75. PubMed ID: 26454375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress response in two strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and copper ions.
    Braha B; Tintemann H; Krauss G; Ehrman J; Bärlocher F; Krauss GJ
    Biometals; 2007 Feb; 20(1):93-105. PubMed ID: 16900400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles.
    El-Baz AF; Sorour NM; Shetaia YM
    J Basic Microbiol; 2016 May; 56(5):520-30. PubMed ID: 26467054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification.
    Loebus J; Leitenmaier B; Meissner D; Braha B; Krauss GJ; Dobritzsch D; Freisinger E
    J Inorg Biochem; 2013 Oct; 127():253-60. PubMed ID: 23800411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium and zinc response of the fungi Heliscus lugdunensis and Verticillium cf. alboatrum isolated from highly polluted water.
    Jaeckel P; Krauss GJ; Krauss G
    Sci Total Environ; 2005 Jun; 346(1-3):274-9. PubMed ID: 15913712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium-specific formation of metal sulfide 'Q-particles' by Klebsiella pneumoniae.
    Holmes JD; Richardson DJ; Saed S; Evans-Gowing R; Russell DA; Sodeau JR
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2521-2530. PubMed ID: 9274006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sizing, stoichiometry and optical absorbance variations of colloidal cadmium sulphide nanoparticles.
    Stebbing SR; Hughes RW; Reynolds PA
    Adv Colloid Interface Sci; 2009; 147-148():272-80. PubMed ID: 18962412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical studies of CdS:Mn nanoparticles.
    Sharma R
    Luminescence; 2012; 27(6):501-4. PubMed ID: 22213486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite.
    Zhang Z; Li M; Chen W; Zhu S; Liu N; Zhu L
    Environ Pollut; 2010 Feb; 158(2):514-9. PubMed ID: 19783084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of bisphenol A by Heliscus lugdunensis, a naturally occurring hyphomycete in freshwater environments.
    Omoike A; Wacker T; Navidonski M
    Chemosphere; 2013 Jun; 91(11):1643-7. PubMed ID: 23399302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli.
    Chen YL; Tuan HY; Tien CW; Lo WH; Liang HC; Hu YC
    Biotechnol Prog; 2009; 25(5):1260-6. PubMed ID: 19630084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of metals on growth and sporulation of aquatic fungi.
    Azevedo MM; Cássio F
    Drug Chem Toxicol; 2010 Jul; 33(3):269-78. PubMed ID: 20429804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization.
    Feswick A; Griffitt RJ; Siebein K; Barber DS
    Aquat Toxicol; 2013 Apr; 130-131():210-8. PubMed ID: 23419536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes.
    Sanità di Toppi L; Vurro E; Rossi L; Marabottini R; Musetti R; Careri M; Maffini M; Mucchino C; Corradini C; Badiani M
    Chemosphere; 2007 Jun; 68(4):769-80. PubMed ID: 17292445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarsening of extracellularly biosynthesized cadmium crystal particles induced by thioacetamide in solution.
    Chen GQ; Zou ZJ; Zeng GM; Yan M; Fan JQ; Chen AW; Yang F; Zhang WJ; Wang L
    Chemosphere; 2011 May; 83(9):1201-7. PubMed ID: 21489598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigations on the photodegradation of toluidine blue dye using cadmium sulphide nanoparticles prepared by a novel method.
    Neelakandeswari N; Sangami G; Dharmaraj N; Taek NK; Kim HY
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1592-8. PubMed ID: 21382744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.