BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26004898)

  • 21. Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition.
    Moreirinha C; Duarte S; Pascoal C; Cássio F
    Arch Environ Contam Toxicol; 2011 Aug; 61(2):211-9. PubMed ID: 20957352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of in situ preparation of CdS filled PVP nano-composite.
    Abdelghany AM; Abdelrazek EM; Rashad DS
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():302-8. PubMed ID: 24793480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress.
    Solé M; Fetzer I; Wennrich R; Sridhar KR; Harms H; Krauss G
    Sci Total Environ; 2008 Jan; 389(2-3):557-65. PubMed ID: 17931691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of cadmium resistance in anaerobic bacterial enrichments degrading pentachlorophenol.
    Kamashwaran SR; Crawford DL
    Can J Microbiol; 2003 Jul; 49(7):418-24. PubMed ID: 14569282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting cadmium toxicity with the kinetics of phytochelatin induction in a marine diatom.
    Wu Y; Yuan Y; Yuan H; Zhang W; Zhang L
    Aquat Toxicol; 2019 Feb; 207():101-109. PubMed ID: 30557755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotransformation of 1-naphthol by a strictly aquatic fungus.
    Augustin T; Schlosser D; Baumbach R; Schmidt J; Grancharov K; Krauss G; Krauss GJ
    Curr Microbiol; 2006 Mar; 52(3):216-20. PubMed ID: 16479357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation.
    Clabeaux BL; Navarro DA; Aga DS; Bisson MA
    Environ Sci Technol; 2011 Jun; 45(12):5332-8. PubMed ID: 21568316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomineralization of metal carbonates by Neurospora crassa.
    Li Q; Csetenyi L; Gadd GM
    Environ Sci Technol; 2014 Dec; 48(24):14409-16. PubMed ID: 25423300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus.
    Ruangsomboon S; Wongrat L
    Aquat Toxicol; 2006 Jun; 78(1):15-20. PubMed ID: 16504313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure.
    Wang MJ; Wang WX
    Aquat Toxicol; 2011 Jan; 101(2):387-95. PubMed ID: 21216349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new approach to the remediation of heavy metal liquid wastes via off-gases produced by Klebsiella pneumoniae M426.
    Essa AM; Creamer NJ; Brown NL; Macaskie LE
    Biotechnol Bioeng; 2006 Nov; 95(4):574-83. PubMed ID: 16958139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes.
    Holmes JD; Smith PR; Evans-Gowing R; Richardson DJ; Russell DA; Sodeau JR
    Arch Microbiol; 1995 Feb; 163(2):143-7. PubMed ID: 7710328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110.
    Sakpirom J; Kantachote D; Siripattanakul-Ratpukdi S; McEvoy J; Khan E
    Chemosphere; 2019 May; 223():455-464. PubMed ID: 30784752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenate and cadmium co-adsorption and co-precipitation on goethite.
    Jiang W; Lv J; Luo L; Yang K; Lin Y; Hu F; Zhang J; Zhang S
    J Hazard Mater; 2013 Nov; 262():55-63. PubMed ID: 24007999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of CdS quantum crystallites in cadmium resistance in Candida glabrata.
    Mehra RK; Mulchandani P; Hunter TC
    Biochem Biophys Res Commun; 1994 May; 200(3):1193-200. PubMed ID: 8185567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes.
    Qu R; Wang X; Wang Z; Wei Z; Wang L
    J Hazard Mater; 2014 Jun; 275():89-98. PubMed ID: 24857893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal.
    Su Y; Adeleye AS; Keller AA; Huang Y; Dai C; Zhou X; Zhang Y
    Water Res; 2015 May; 74():47-57. PubMed ID: 25706223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration.
    Wolff G; Pereira GC; Castro EM; Louzada J; Coelho FF
    Braz J Biol; 2012 Feb; 72(1):71-7. PubMed ID: 22437387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of 4-n-nonylphenol on aquatic hyphomycetes.
    Bärlocher F; Guenzel K; Sridhar KR; Duffy SJ
    Sci Total Environ; 2011 Apr; 409(9):1651-7. PubMed ID: 21329963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and characterization of ZnO@CdS core-shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap.
    Habibi MH; Rahmati MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():13-8. PubMed ID: 24926644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.