These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26005000)

  • 21. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition.
    Giuliani N; Rizzoli V; Roodman GD
    Blood; 2006 Dec; 108(13):3992-6. PubMed ID: 16917004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular mechanisms of multiple myeloma bone disease.
    Oranger A; Carbone C; Izzo M; Grano M
    Clin Dev Immunol; 2013; 2013():289458. PubMed ID: 23818912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myeloma bone disease.
    Sezer O
    Hematology; 2005; 10 Suppl 1():19-24. PubMed ID: 16188625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation.
    Ely SA; Knowles DM
    Am J Pathol; 2002 Apr; 160(4):1293-9. PubMed ID: 11943714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanisms of bone lesions in human plasmacytomas.
    Bataille R
    Stem Cells; 1995 Aug; 13 Suppl 2():40-7. PubMed ID: 8520510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function.
    Vallet S; Pozzi S; Patel K; Vaghela N; Fulciniti MT; Veiby P; Hideshima T; Santo L; Cirstea D; Scadden DT; Anderson KC; Raje N
    Leukemia; 2011 Jul; 25(7):1174-81. PubMed ID: 21403648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myeloma bone disease: recent advances in biology, diagnosis, and treatment.
    Sezer O
    Oncologist; 2009 Mar; 14(3):276-83. PubMed ID: 19286761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.
    Heath DJ; Vanderkerken K; Cheng X; Gallagher O; Prideaux M; Murali R; Croucher PI
    Cancer Res; 2007 Jan; 67(1):202-8. PubMed ID: 17210700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hepatocyte growth factor pathway upregulation in the bone marrow microenvironment in multiple myeloma is associated with lytic bone disease.
    Kristensen IB; Christensen JH; Lyng MB; Møller MB; Pedersen L; Rasmussen LM; Ditzel HJ; Abildgaard N
    Br J Haematol; 2013 May; 161(3):373-82. PubMed ID: 23431957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pathogenesis of the bone disease of multiple myeloma.
    Edwards CM; Zhuang J; Mundy GR
    Bone; 2008 Jun; 42(6):1007-13. PubMed ID: 18406675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.
    Liu H; Liu Z; Du J; He J; Lin P; Amini B; Starbuck MW; Novane N; Shah JJ; Davis RE; Hou J; Gagel RF; Yang J
    Sci Transl Med; 2016 Aug; 8(353):353ra113. PubMed ID: 27559096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo.
    Chantry AD; Heath D; Mulivor AW; Pearsall S; Baud'huin M; Coulton L; Evans H; Abdul N; Werner ED; Bouxsein ML; Key ML; Seehra J; Arnett TR; Vanderkerken K; Croucher P
    J Bone Miner Res; 2010 Dec; 25(12):2633-46. PubMed ID: 20533325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Bone hyperresorption in multiple myeloma].
    Beaudreuil J; Orcel P
    Presse Med; 2000 Mar; 29(9):492-7. PubMed ID: 10745943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions.
    Boissy P; Andersen TL; Lund T; Kupisiewicz K; Plesner T; Delaissé JM
    Leuk Res; 2008 Nov; 32(11):1661-8. PubMed ID: 18394701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in the understanding of myeloma bone disease and tumour growth.
    Yaccoby S
    Br J Haematol; 2010 May; 149(3):311-21. PubMed ID: 20230410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma.
    Gunn WG; Conley A; Deininger L; Olson SD; Prockop DJ; Gregory CA
    Stem Cells; 2006 Apr; 24(4):986-91. PubMed ID: 16293576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osteoblast function in myeloma.
    Roodman GD
    Bone; 2011 Jan; 48(1):135-40. PubMed ID: 20601285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of clodronate in multiple myeloma.
    Delmas PD
    Bone; 1991; 12 Suppl 1():S31-4. PubMed ID: 1835398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined treatment with a transforming growth factor beta inhibitor (1D11) and bortezomib improves bone architecture in a mouse model of myeloma-induced bone disease.
    Nyman JS; Merkel AR; Uppuganti S; Nayak B; Rowland B; Makowski AJ; Oyajobi BO; Sterling JA
    Bone; 2016 Oct; 91():81-91. PubMed ID: 27423464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteoblast stimulation in multiple myeloma lacking lytic bone lesions.
    Bataille R; Chappard D; Marcelli C; Rossi JF; Dessauw P; Baldet P; Sany J; Alexandre C
    Br J Haematol; 1990 Dec; 76(4):484-7. PubMed ID: 2265110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.