These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 26005138)
1. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Oliveira Barud HG; Barud Hda S; Cavicchioli M; do Amaral TS; de Oliveira Junior OB; Santos DM; Petersen AL; Celes F; Borges VM; de Oliveira CI; de Oliveira PF; Furtado RA; Tavares DC; Ribeiro SJ Carbohydr Polym; 2015 Sep; 128():41-51. PubMed ID: 26005138 [TBL] [Abstract][Full Text] [Related]
2. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology. Teimouri A; Ebrahimi R; Emadi R; Beni BH; Chermahini AN Int J Biol Macromol; 2015 May; 76():292-302. PubMed ID: 25709014 [TBL] [Abstract][Full Text] [Related]
3. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. S G; T G; K V; Faleh A A; Sukumaran A; P N S Int J Biol Macromol; 2018 Dec; 120(Pt A):876-885. PubMed ID: 30171951 [TBL] [Abstract][Full Text] [Related]
4. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. Feng XX; Zhang LL; Chen JY; Guo YH; Zhang HP; Jia CI Int J Biol Macromol; 2007 Jan; 40(2):105-11. PubMed ID: 16860861 [TBL] [Abstract][Full Text] [Related]
6. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Paşcu EI; Stokes J; McGuinness GB Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204 [TBL] [Abstract][Full Text] [Related]
7. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. de Oliveira Barud HG; da Silva RR; da Silva Barud H; Tercjak A; Gutierrez J; Lustri WR; de Oliveira OB; Ribeiro SJL Carbohydr Polym; 2016 Nov; 153():406-420. PubMed ID: 27561512 [TBL] [Abstract][Full Text] [Related]
8. Novel fluoridated silk fibroin/ TiO Johari N; Madaah Hosseini HR; Samadikuchaksaraei A Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():265-276. PubMed ID: 29025657 [TBL] [Abstract][Full Text] [Related]
9. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228 [TBL] [Abstract][Full Text] [Related]
10. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Farokhi M; Mottaghitalab F; Shokrgozar MA; Ai J; Hadjati J; Azami M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():401-10. PubMed ID: 24411394 [TBL] [Abstract][Full Text] [Related]
11. Polyethylenimine/silk fibroin multilayers deposited nanofibrics for cell culture. Ye X; Li S; Chen X; Zhan Y; Li X Int J Biol Macromol; 2017 Jan; 94(Pt A):492-499. PubMed ID: 27769929 [TBL] [Abstract][Full Text] [Related]
12. Incorporating bioactive glass nanoparticles in silk fibroin/bacterial nanocellulose composite scaffolds improves their biological and osteogenic properties for bone tissue engineering applications. Niknafs B; Meskaraf-Asadabadi M; Hamdi K; Ghanbari E Int J Biol Macromol; 2024 May; 266(Pt 1):131167. PubMed ID: 38547948 [TBL] [Abstract][Full Text] [Related]
13. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering. Qian J; Suo A; Jin X; Xu W; Xu M J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779 [TBL] [Abstract][Full Text] [Related]
15. [Progress of silk fibroin in the cell scaffold of tissue engineering]. Tian L; Min S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1375-8. PubMed ID: 17228748 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds. Gholipourmalekabadi M; Mozafari M; Gholipourmalekabadi M; Nazm Bojnordi M; Hashemi-Soteh MB; Salimi M; Rezaei N; Sameni M; Samadikuchaksaraei A; Ghasemi Hamidabadi H Biotechnol Appl Biochem; 2015; 62(4):441-50. PubMed ID: 25196187 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications. Ju HW; Sheikh FA; Moon BM; Park HJ; Lee OJ; Kim JH; Eun JJ; Khang G; Park CH J Biomed Mater Res A; 2014 Aug; 102(8):2713-24. PubMed ID: 24026912 [TBL] [Abstract][Full Text] [Related]
18. Gelatin modified ultrathin silk fibroin films for enhanced proliferation of cells. Yang L; Yaseen M; Zhao X; Coffey P; Pan F; Wang Y; Xu H; Webster J; Lu JR Biomed Mater; 2015 Mar; 10(2):025003. PubMed ID: 25784671 [TBL] [Abstract][Full Text] [Related]
19. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold. Panda N; Bissoyi A; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157 [TBL] [Abstract][Full Text] [Related]
20. A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Lv X; Feng C; Liu Y; Peng X; Chen S; Xiao D; Wang H; Li Z; Xu Y; Lu M Theranostics; 2018; 8(11):3153-3163. PubMed ID: 29896309 [No Abstract] [Full Text] [Related] [Next] [New Search]