These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 26005346)
1. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres. Chang R; Sun L; Webster TJ Int J Nanomedicine; 2015; 10():3351-65. PubMed ID: 26005346 [TBL] [Abstract][Full Text] [Related]
2. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436 [TBL] [Abstract][Full Text] [Related]
3. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Mukerjee A; Vishwanatha JK Anticancer Res; 2009 Oct; 29(10):3867-75. PubMed ID: 19846921 [TBL] [Abstract][Full Text] [Related]
4. Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy. Xi Y; Jiang T; Yu Y; Yu J; Xue M; Xu N; Wen J; Wang W; He H; Shen Y; Chen D; Ye X; Webster TJ Int J Nanomedicine; 2019; 14():6425-6437. PubMed ID: 31496695 [TBL] [Abstract][Full Text] [Related]
5. Cytotoxicity Effects of Curcumin Loaded on Chitosan Alginate Nanospheres on the KMBC-10 Spheroids Cell Line. Afzali E; Eslaminejad T; Yazdi Rouholamini SE; Shahrokhi-Farjah M; Ansari M Int J Nanomedicine; 2021; 16():579-589. PubMed ID: 33531802 [TBL] [Abstract][Full Text] [Related]
6. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
7. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles. Liang J; Wu W; Lai D; Li J; Fang C J Biomater Sci Polym Ed; 2015; 26(6):369-83. PubMed ID: 25621942 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery. Sajomsang W; Gonil P; Saesoo S; Ruktanonchai UR; Srinuanchai W; Puttipipatkhachorn S Int J Pharm; 2014 Dec; 477(1-2):261-72. PubMed ID: 25455774 [TBL] [Abstract][Full Text] [Related]
9. Curcuminoid-loaded poly(methyl methacrylate) nanoparticles for cancer therapy. Sahu A; Solanki P; Mitra S Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):101-105. PubMed ID: 29593406 [TBL] [Abstract][Full Text] [Related]
11. Y-shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin. Feng R; Zhu W; Chu W; Teng F; Meng N; Deng P; Song Z Anticancer Agents Med Chem; 2017; 17(4):599-607. PubMed ID: 27528180 [TBL] [Abstract][Full Text] [Related]
12. Short communication: selective cytotoxicity of curcumin on osteosarcoma cells compared to healthy osteoblasts. Chang R; Sun L; Webster TJ Int J Nanomedicine; 2014; 9():461-5. PubMed ID: 24453488 [TBL] [Abstract][Full Text] [Related]
13. Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers. Hu Y; Darcos V; Monge S; Li S; Zhou Y; Su F Int J Pharm; 2014 Dec; 476(1-2):31-40. PubMed ID: 25260217 [TBL] [Abstract][Full Text] [Related]
14. Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. Jiang K; Shen M; Xu W Int J Nanomedicine; 2018; 13():2561-2569. PubMed ID: 29731631 [TBL] [Abstract][Full Text] [Related]
15. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin-Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation. Bai F; Diao J; Wang Y; Sun S; Zhang H; Liu Y; Wang Y; Cao J J Agric Food Chem; 2017 Aug; 65(32):6840-6847. PubMed ID: 28721737 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors. Kolmas J; Pajor K; Pajchel L; Przekora A; Ginalska G; Oledzka E; Sobczak M Int J Nanomedicine; 2017; 12():5633-5642. PubMed ID: 28848343 [TBL] [Abstract][Full Text] [Related]
17. Enhanced breast cancer therapy using multifunctional lipid-coated nanoparticles combining curcumin chemotherapy and nitric oxide gas delivery. Yan Z; Xiao P; Ji P; Su R; Ren Z; Xu L; Qiu X; Li D Sci Rep; 2024 Aug; 14(1):18107. PubMed ID: 39103425 [TBL] [Abstract][Full Text] [Related]
18. PEG-coumarin nanoaggregates as π-π stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery. Behl G; Kumar P; Sikka M; Fitzhenry L; Chhikara A J Biomater Sci Polym Ed; 2018 Mar; 29(4):360-375. PubMed ID: 29271302 [TBL] [Abstract][Full Text] [Related]
19. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells. Erfani-Moghadam V; Nomani A; Zamani M; Yazdani Y; Najafi F; Sadeghizadeh M Int J Nanomedicine; 2014; 9():5541-54. PubMed ID: 25489242 [TBL] [Abstract][Full Text] [Related]
20. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Liu J; Liu J; Xu H; Zhang Y; Chu L; Liu Q; Song N; Yang C Int J Nanomedicine; 2014; 9():197-207. PubMed ID: 24399876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]