These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26005497)

  • 21. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microsystem for field-amplified electrokinetic trapping preconcentration of DNA at poly(ethylene terephthalate) membranes.
    Hahn T; O'Sullivan CK; Drese KS
    Anal Chem; 2009 Apr; 81(8):2904-11. PubMed ID: 19296594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis.
    Lewpiriyawong N; Kandaswamy K; Yang C; Ivanov V; Stocker R
    Anal Chem; 2011 Dec; 83(24):9579-85. PubMed ID: 22035423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels.
    Hatch AV; Herr AE; Throckmorton DJ; Brennan JS; Singh AK
    Anal Chem; 2006 Jul; 78(14):4976-84. PubMed ID: 16841920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced immunoassay in a nanofluidic preconcentrator utilizing nano-interstices among self-assembled gold nanoparticles.
    Vu-Dinh H; Tsao WY; Jen CP
    Biomed Microdevices; 2022 Jun; 24(2):19. PubMed ID: 35666324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.
    Cong Y; Katipamula S; Geng T; Prost SA; Tang K; Kelly RT
    Electrophoresis; 2016 Feb; 37(3):455-62. PubMed ID: 26255610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatiotemporally Defining Biomolecule Preconcentration by Merging Ion Concentration Polarization.
    Kwak R; Kang JY; Kim TS
    Anal Chem; 2016 Jan; 88(1):988-96. PubMed ID: 26642086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pneumatic handling of droplets on-demand on a microfluidic device for seamless processing of reaction and electrophoretic separation.
    Kaneda S; Ono K; Fukuba T; Nojima T; Yamamoto T; Fujii T
    Electrophoresis; 2010 Nov; 31(22):3719-26. PubMed ID: 21077240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous detection of antibacterial sulfonamides in a microfluidic device with amperometry.
    Won SY; Chandra P; Hee TS; Shim YB
    Biosens Bioelectron; 2013 Jan; 39(1):204-9. PubMed ID: 22884652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of driftless preconcentration using ion concentration polarization leveraged by convection and diffusion.
    Baek S; Choi J; Son SY; Kim J; Hong S; Kim HC; Chae JH; Lee H; Kim SJ
    Lab Chip; 2019 Oct; 19(19):3190-3199. PubMed ID: 31475274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiphysics simulation of ion concentration polarization induced by nanoporous membranes in dual channel devices.
    Jia M; Kim T
    Anal Chem; 2014 Aug; 86(15):7360-7. PubMed ID: 25033014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation and simultaneous detection of anticancer drugs in a microfluidic device with an amperometric biosensor.
    Chandra P; Zaidi SA; Noh HB; Shim YB
    Biosens Bioelectron; 2011 Oct; 28(1):326-32. PubMed ID: 21820886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bipolar electrode depletion: membraneless filtration of charged species using an electrogenerated electric field gradient.
    Sheridan E; Knust KN; Crooks RM
    Analyst; 2011 Oct; 136(20):4134-7. PubMed ID: 21869950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paper-Based Flow Fractionation System Applicable to Preconcentration and Field-Flow Separation.
    Hong S; Kwak R; Kim W
    Anal Chem; 2016 Feb; 88(3):1682-7. PubMed ID: 26713779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advancements in ion concentration polarization.
    Li M; Anand RK
    Analyst; 2016 Jun; 141(12):3496-510. PubMed ID: 26965754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis.
    Long Z; Shen Z; Wu D; Qin J; Lin B
    Lab Chip; 2007 Dec; 7(12):1819-24. PubMed ID: 18030406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multistep liquid-phase lithography for fast prototyping of microfluidic free-flow-electrophoresis chips.
    Jezierski S; Gitlin L; Nagl S; Belder D
    Anal Bioanal Chem; 2011 Nov; 401(8):2651-6. PubMed ID: 21892629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.
    Sahore V; Kumar S; Rogers CI; Jensen JK; Sonker M; Woolley AT
    Anal Bioanal Chem; 2016 Jan; 408(2):599-607. PubMed ID: 26537925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preconcentration of Fluorescent Dyes in Electromembrane Systems via Electrophoretic Migration.
    Kim M; Kim B
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.