These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26005497)

  • 41. Preconcentration of Fluorescent Dyes in Electromembrane Systems via Electrophoretic Migration.
    Kim M; Kim B
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices.
    Wainright A; Nguyen UT; Bjornson T; Boone TD
    Electrophoresis; 2003 Nov; 24(21):3784-92. PubMed ID: 14613206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrophoretic separations of neuromediators on microfluidic devices.
    Mourzina Y; Kalyagin D; Steffen A; Offenhäusser A
    Talanta; 2006 Oct; 70(3):489-98. PubMed ID: 18970798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrokinetic biomolecule preconcentration using xurography-based micro-nano-micro fluidic devices.
    Yuan X; Renaud L; Audry MC; Kleimann P
    Anal Chem; 2015 Sep; 87(17):8695-701. PubMed ID: 26211837
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective and eco-friendly method for determination of mercury(II) ions in aqueous samples using an on-line AuNPs-PDMS composite microfluidic device/ICP-MS system.
    Hsu KC; Lee CF; Tseng WC; Chao YY; Huang YL
    Talanta; 2014 Oct; 128():408-13. PubMed ID: 25059179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiphysics simulation of ion concentration polarization induced by a surface-patterned nanoporous membrane in single channel devices.
    Jia M; Kim T
    Anal Chem; 2014 Oct; 86(20):10365-72. PubMed ID: 25266500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Device for dielectrophoretic separation and collection of nanoparticles and DNA under high conductance conditions.
    Song Y; Sonnenberg A; Heaney Y; Heller MJ
    Electrophoresis; 2015 May; 36(9-10):1107-14. PubMed ID: 25780998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermoswitchable electrokinetic ion-enrichment/elution based on a poly(N-isopropylacrylamide) hydrogel plug in a microchannel.
    Li Z; He Q; Ma D; Chen H; Soper SA
    Anal Chem; 2010 Dec; 82(24):10030-6. PubMed ID: 21105674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A microfluidic impedance flow cytometer for identification of differentiation state of stem cells.
    Song H; Wang Y; Rosano JM; Prabhakarpandian B; Garson C; Pant K; Lai E
    Lab Chip; 2013 Jun; 13(12):2300-10. PubMed ID: 23636706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips.
    Vázquez M; Frankenfeld C; Coltro WK; Carrilho E; Diamond D; Lunte SM
    Analyst; 2010 Jan; 135(1):96-103. PubMed ID: 20024187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes.
    Chen CM; Chang GL; Lin CH
    J Chromatogr A; 2008 Jun; 1194(2):231-6. PubMed ID: 18485353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Origami paper-based sample preconcentration using sequentially driven ion concentration polarization.
    Lee J; Yoo YK; Lee D; Kim C; Kim KH; Lee S; Kwak S; Kang JY; Kim H; Yoon DS; Hur D; Lee JH
    Lab Chip; 2021 Mar; 21(5):867-874. PubMed ID: 33507198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preconcentration of proteins on microfluidic devices using porous silica membranes.
    Foote RS; Khandurina J; Jacobson SC; Ramsey JM
    Anal Chem; 2005 Jan; 77(1):57-63. PubMed ID: 15623278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D; Besselink GA; Schlautmann S; Schasfoort RB
    Lab Chip; 2006 Mar; 6(3):374-80. PubMed ID: 16511620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Demonstration of an integrated electroactive polymer actuator on a microfluidic electrophoresis device.
    Price AK; Anderson KM; Culbertson CT
    Lab Chip; 2009 Jul; 9(14):2076-84. PubMed ID: 19568678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of carbon dioxide on peak mode isotachophoresis: simultaneous preconcentration and separation.
    Khurana TK; Santiago JG
    Lab Chip; 2009 May; 9(10):1377-84. PubMed ID: 19417904
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical simulation of dielectrophoretic separation of live/dead cells using a three-dimensional nonuniform AC electric field in micro-fabricated devices.
    Tada S
    Biorheology; 2015; 52(3):211-24. PubMed ID: 26406782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.