These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26005858)
1. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis. Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858 [TBL] [Abstract][Full Text] [Related]
2. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis. Williams MR; Sigman ME; Lewis J; Pitan KM Forensic Sci Int; 2012 Oct; 222(1-3):373-86. PubMed ID: 22920087 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum. Waddell EE; Frisch-Daiello JL; Williams MR; Sigman ME J Forensic Sci; 2014 Sep; 59(5):1198-204. PubMed ID: 24962674 [TBL] [Abstract][Full Text] [Related]
4. Application of an HS-MS for the detection of ignitable liquids from fire debris. Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705 [TBL] [Abstract][Full Text] [Related]
5. Progress toward the determination of correct classification rates in fire debris analysis II: utilizing soft independent modeling of class analogy (SIMCA). Waddell EE; Williams MR; Sigman ME J Forensic Sci; 2014 Jul; 59(4):927-35. PubMed ID: 24502629 [TBL] [Abstract][Full Text] [Related]
6. Application of self-organizing feature maps to analyze the relationships between ignitable liquids and selected mass spectral ions. Frisch-Daiello JL; Williams MR; Waddell EE; Sigman ME Forensic Sci Int; 2014 Mar; 236():84-9. PubMed ID: 24529778 [TBL] [Abstract][Full Text] [Related]
7. Progress toward the determination of correct classification rates in fire debris analysis. Waddell EE; Song ET; Rinke CN; Williams MR; Sigman ME J Forensic Sci; 2013 Jul; 58(4):887-96. PubMed ID: 23551258 [TBL] [Abstract][Full Text] [Related]
8. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry. Martín-Alberca C; García-Ruiz C; Delémont O J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121 [TBL] [Abstract][Full Text] [Related]
9. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography. Frysinger GS; Gaines RB J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325 [TBL] [Abstract][Full Text] [Related]
10. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris. Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245 [TBL] [Abstract][Full Text] [Related]
11. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics. Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319 [TBL] [Abstract][Full Text] [Related]
12. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris. Lu Y; Harrington PB Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164 [TBL] [Abstract][Full Text] [Related]
13. Assessing evidentiary value in fire debris analysis by chemometric and likelihood ratio approaches. Sigman ME; Williams MR Forensic Sci Int; 2016 Jul; 264():113-21. PubMed ID: 27081767 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris. Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005 [TBL] [Abstract][Full Text] [Related]
15. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose. Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407 [TBL] [Abstract][Full Text] [Related]
16. Rapid GC-MS as a Screening Tool for Forensic Fire Debris Analysis. Capistran BA; Sisco E Forensic Chem; 2022 Sep; 30():. PubMed ID: 36733494 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science. de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in the applications of forensic science to fire debris analysis. Dolan J Anal Bioanal Chem; 2003 Aug; 376(8):1168-71. PubMed ID: 12736769 [TBL] [Abstract][Full Text] [Related]
19. Recovery of oxygenated ignitable liquids by zeolites, Part I: Novel extraction methodology in fire debris analysis. St Pierre KA; Desiderio VJ; Hall AB Forensic Sci Int; 2014 Jul; 240():137-43. PubMed ID: 24780556 [TBL] [Abstract][Full Text] [Related]
20. Microbial degradation of ignitable liquids on building materials. Hutches K Forensic Sci Int; 2013 Oct; 232(1-3):e38-41. PubMed ID: 24008200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]