BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26006069)

  • 1. Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) T.D. Penn.
    de Freitas TA; França MG; de Almeida AA; de Oliveira SJ; de Jesus RM; Souza VL; Dos Santos Silva JV; Mangabeira PA
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15479-94. PubMed ID: 26006069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper.
    Minkina T; Rajput V; Fedorenko G; Fedorenko A; Mandzhieva S; Sushkova S; Morin T; Yao J
    Environ Geochem Health; 2020 Jan; 42(1):45-58. PubMed ID: 30874936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess.
    Sánchez-Pardo B; Fernández-Pascual M; Zornoza P
    J Plant Res; 2014; 127(1):119-29. PubMed ID: 23979008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens.
    Peng HY; Yang XE; Tian SK
    J Zhejiang Univ Sci B; 2005 May; 6(5):311-8. PubMed ID: 15822140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications in environmental bioinorganic: Nutritional and ultrastructural evaluation and calculus of thermodynamic and structural properties of metal-oxalate complexes.
    Tolentino TA; Bertoli AC; dos Santos Pires M; Carvalho R; Labory CR; Nunes JS; Bastos AR; de Freitas MP
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():750-7. PubMed ID: 26099826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.
    Costa MB; Tavares FV; Martinez CB; Colares IG; Martins CMG
    Ecotoxicol Environ Saf; 2018 Jul; 155():117-124. PubMed ID: 29510306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants.
    de Oliveira C; Ramos SJ; Siqueira JO; Faquin V; de Castro EM; Amaral DC; Techio VH; Coelho LC; e Silva PH; Schnug E; Guilherme LR
    Ecotoxicol Environ Saf; 2015 Dec; 122():136-44. PubMed ID: 26232040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of copper toxicity on root morphology, ultrastructure, and copper accumulation in Moso bamboo (Phyllostachys pubescens).
    Chen J; Peng D; Shafi M; Li S; Wu J; Ye Z; Yan W; Lu K; Liu D
    Z Naturforsch C J Biosci; 2014; 69(9-10):399-406. PubMed ID: 25711041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines.
    Juang KW; Lee YI; Lai HY; Chen BC
    Ecotoxicol Environ Saf; 2014 Jun; 104():36-42. PubMed ID: 24632121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping.
    Marastoni L; Sandri M; Pii Y; Valentinuzzi F; Brunetto G; Cesco S; Mimmo T
    Chemosphere; 2019 Jan; 214():563-578. PubMed ID: 30286423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphophysiological, ultrastructural, and nutritional changes induced by Cu toxicity in young Erythrina fusca plants.
    Souza VL; de Almeida AF; Mangabeira PAO; Silva DDC; de Jesus RM; Valle RR
    Int J Phytoremediation; 2017 Jul; 19(7):621-631. PubMed ID: 28084783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots.
    Hippler FWR; Petená G; Boaretto RM; Quaggio JA; Azevedo RA; Mattos-Jr D
    Environ Sci Pollut Res Int; 2018 May; 25(13):13134-13146. PubMed ID: 29488204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nanomolar copper on water plants--comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions.
    Thomas G; Stärk HJ; Wellenreuther G; Dickinson BC; Küpper H
    Aquat Toxicol; 2013 Sep; 140-141():27-36. PubMed ID: 23747550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cupric stress induces oxidative damage marked by accumulation of H2O2 and changes to chloroplast ultrastructure in primary leaves of beans ( Phaseolus vulgaris L.).
    Bouazizi H; Jouili H; Geitmann A; Ferjani E
    Acta Biol Hung; 2010 Jun; 61(2):191-203. PubMed ID: 20519173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology, ultrastructure, and element uptake in Calophyllum brasiliense Cambess. (Calophyllaceae J. Agardh) seedlings under cadmium exposure.
    Pereira AS; Cortez PA; de Almeida AF; Prasad MNV; França MGC; da Cunha M; de Jesus RM; Mangabeira PAO
    Environ Sci Pollut Res Int; 2017 Jun; 24(18):15576-15588. PubMed ID: 28516356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper.
    De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G
    Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.
    Pätsikkä E; Kairavuo M; Sersen F; Aro EM; Tyystjärvi E
    Plant Physiol; 2002 Jul; 129(3):1359-67. PubMed ID: 12114589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell wall accumulation of cu ions and modulation of lignifying enzymes in primary leaves of bean seedlings exposed to excess copper.
    Bouazizi H; Jouili H; Geitmann A; El Ferjani E
    Biol Trace Elem Res; 2011 Jan; 139(1):97-107. PubMed ID: 20204549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Triticum aestivum seedling response to the excess of zinc.
    Glińska S; Gapińska M; Michlewska S; Skiba E; Kubicki J
    Protoplasma; 2016 Mar; 253(2):367-77. PubMed ID: 25902894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine.
    Boojar MM; Goodarzi F
    Chemosphere; 2007 May; 67(11):2138-47. PubMed ID: 17316756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.