BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26006069)

  • 41. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino.
    Zhang L; Pan Y; Lv W; Xiong ZT
    Ecotoxicol Environ Saf; 2014 Jun; 104():278-84. PubMed ID: 24726940
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidative status of Matricaria chamomilla plants related to cadmium and copper uptake.
    Kovácik J; Backor M
    Ecotoxicology; 2008 Aug; 17(6):471-9. PubMed ID: 18389371
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.).
    Tani FH; Barrington S
    Environ Pollut; 2005 Dec; 138(3):548-58. PubMed ID: 16043272
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phytofiltration of copper from contaminated water: growth response, copper uptake and lignin content in Elsholtzia splendens and Elsholtzia argyi.
    Tian S; Peng H; Yang X; Lu L; Zhang L
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):85-9. PubMed ID: 18421404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L.
    Castro AV; de Almeida AA; Pirovani CP; Reis GS; Almeida NM; Mangabeira PA
    Ecotoxicol Environ Saf; 2015 May; 115():174-86. PubMed ID: 25700096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sulfate facilitates cadmium accumulation in leaves of Vicia faba L. at flowering stage.
    Wu J; Sagervanshi A; Mühling KH
    Ecotoxicol Environ Saf; 2018 Jul; 156():375-382. PubMed ID: 29574320
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.
    Rivelli AR; De Maria S; Puschenreiter M; Gherbin P
    Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of calcium on rhizotoxicity and the accumulation and translocation of copper by grapevines.
    Chen PY; Lee YI; Chen BC; Juang KW
    Plant Physiol Biochem; 2013 Dec; 73():375-82. PubMed ID: 24211513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response.
    Zhang Z; Ke M; Qu Q; Peijnenburg WJGM; Lu T; Zhang Q; Ye Y; Xu P; Du B; Sun L; Qian H
    Environ Pollut; 2018 Aug; 239():689-697. PubMed ID: 29715688
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subcellular targeting of bacterial CusF enhances Cu accumulation and alters root to shoot Cu translocation in arabidopsis.
    Yu P; Yuan J; Deng X; Ma M; Zhang H
    Plant Cell Physiol; 2014 Sep; 55(9):1568-81. PubMed ID: 24951313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding.
    Cao Y; Ma C; Chen G; Zhang J; Xing B
    Environ Pollut; 2017 Jun; 225():644-653. PubMed ID: 28336092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biotoxic effects of copper on ureide metabolism of pigeon pea.
    Reddy DS; Reddy G; Polasa H
    Bull Environ Contam Toxicol; 1995 Jun; 54(6):884-91. PubMed ID: 7647505
    [No Abstract]   [Full Text] [Related]  

  • 54. Effects of copper treatment on mineral nutrient absorption and cell ultrastructure of spinach seedlings.
    Gong Q; Wang L; Dai TW; Kang Q; Zhou JY; Li ZH
    Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):941-950. PubMed ID: 30912387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels.
    Bankaji I; Caçador I; Sleimi N
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13058-69. PubMed ID: 25925143
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pb-induced phytotoxicity in para grass (Brachiaria mutica) and Castorbean (Ricinus communis L.): Antioxidant and ultrastructural studies.
    Khan MM; Islam E; Irem S; Akhtar K; Ashraf MY; Iqbal J; Liu D
    Chemosphere; 2018 Jun; 200():257-265. PubMed ID: 29494906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus.
    Chen Q; Lu X; Guo X; Pan Y; Yu B; Tang Z; Guo Q
    Ecotoxicol Environ Saf; 2018 Aug; 157():266-275. PubMed ID: 29626640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum.
    Rizvi A; Khan MS
    Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.).
    Ambrosini VG; Rosa DJ; Corredor Prado JP; Borghezan M; Bastos de Melo GW; Fonsêca de Sousa Soares CR; Comin JJ; Simão DG; Brunetto G
    Plant Physiol Biochem; 2015 Nov; 96():270-80. PubMed ID: 26318144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.