These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26006111)

  • 1. The grid-based fast multipole method--a massively parallel numerical scheme for calculating two-electron interaction energies.
    Toivanen EA; Losilla SA; Sundholm D
    Phys Chem Chem Phys; 2015 Dec; 17(47):31480-90. PubMed ID: 26006111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Generalized Grid-Based Fast Multipole Method for Integrating Helmholtz Kernels.
    Parkkinen P; Losilla SA; Solala E; Toivanen EA; Xu WH; Sundholm D
    J Chem Theory Comput; 2017 Feb; 13(2):654-665. PubMed ID: 28094984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.
    Amisaki T; Toyoda S; Miyagawa H; Kitamura K
    J Comput Chem; 2003 Apr; 24(5):582-92. PubMed ID: 12632472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extension of the fast multipole method for the rectangular cells with an anisotropic partition tree structure.
    Andoh Y; Yoshii N; Okazaki S
    J Comput Chem; 2020 May; 41(14):1353-1367. PubMed ID: 32100899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of general purpose graphics processing units with MODFLOW.
    Hughes JD; White JT
    Ground Water; 2013; 51(6):833-46. PubMed ID: 23281733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A divide and conquer real-space approach for all-electron molecular electrostatic potentials and interaction energies.
    Losilla SA; Sundholm D
    J Chem Phys; 2012 Jun; 136(21):214104. PubMed ID: 22697527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations.
    Schwörer M; Lorenzen K; Mathias G; Tavan P
    J Chem Phys; 2015 Mar; 142(10):104108. PubMed ID: 25770527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme.
    Del Ben M; Hutter J; VandeVondele J
    J Chem Theory Comput; 2013 Jun; 9(6):2654-71. PubMed ID: 26583860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel implementation of a direct method for calculating electrostatic potentials.
    Jusélius J; Sundholm D
    J Chem Phys; 2007 Mar; 126(9):094101. PubMed ID: 17362098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition.
    Quan W; Evans SJ; Hastings HM
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):372-85. PubMed ID: 9509753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria.
    Doser B; Lambrecht DS; Kussmann J; Ochsenfeld C
    J Chem Phys; 2009 Feb; 130(6):064107. PubMed ID: 19222267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient multipole model and linear scaling of NDDO-based methods.
    Tokmachev AM; Tchougréeff AL
    J Phys Chem A; 2005 Aug; 109(33):7613-20. PubMed ID: 16834132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MODYLAS: A Highly Parallelized General-Purpose Molecular Dynamics Simulation Program for Large-Scale Systems with Long-Range Forces Calculated by Fast Multipole Method (FMM) and Highly Scalable Fine-Grained New Parallel Processing Algorithms.
    Andoh Y; Yoshii N; Fujimoto K; Mizutani K; Kojima H; Yamada A; Okazaki S; Kawaguchi K; Nagao H; Iwahashi K; Mizutani F; Minami K; Ichikawa S; Komatsu H; Ishizuki S; Takeda Y; Fukushima M
    J Chem Theory Comput; 2013 Jul; 9(7):3201-9. PubMed ID: 26583997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the Accuracy and Efficiency of Fast Hierarchical Multipole Expansions for MD Simulations.
    Lorenzen K; Schwörer M; Tröster P; Mates S; Tavan P
    J Chem Theory Comput; 2012 Oct; 8(10):3628-36. PubMed ID: 26593008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations.
    Nishimura Y; Nakai H
    J Comput Chem; 2018 Jan; 39(2):105-116. PubMed ID: 29047123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesh-free hierarchical clustering methods for fast evaluation of electrostatic interactions of point multipoles.
    Boateng HA
    J Chem Phys; 2017 Oct; 147(16):164104. PubMed ID: 29096477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and accurate Coulomb calculation with Gaussian functions.
    Füsti-Molnár L; Kong J
    J Chem Phys; 2005 Feb; 122(7):074108. PubMed ID: 15743222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RPYFMM: Parallel Adaptive Fast Multipole Method for Rotne-Prager-Yamakawa Tensor in Biomolecular Hydrodynamics Simulations.
    Guan W; Cheng X; Huang J; Huber G; Li W; McCammon JA; Zhang B
    Comput Phys Commun; 2018 Jun; 227():99-108. PubMed ID: 30147116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear-scaling multipole-accelerated Gaussian and finite-element Coulomb method.
    Watson MA; Kurashige Y; Nakajima T; Hirao K
    J Chem Phys; 2008 Feb; 128(5):054105. PubMed ID: 18266443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy.
    Kohnke B; Kutzner C; Grubmüller H
    J Chem Theory Comput; 2020 Nov; 16(11):6938-6949. PubMed ID: 33084336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.