BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 26006180)

  • 1. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition.
    Wu Q; Jung SJ; Jang SK; Lee J; Jeon I; Suh H; Kim YH; Lee YH; Lee S; Song YJ
    Nanoscale; 2015 Jun; 7(23):10357-61. PubMed ID: 26006180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition.
    Wu Q; Jung SJ; Jang SK; Lee J; Jeon I; Suh H; Kim YH; Lee YH; Lee S; Song YJ
    Nanoscale; 2015 Jul; 7(28):12225. PubMed ID: 26133951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic transparency of hexagonal boron nitride on copper for chemical vapor deposition growth of large-area and high-quality graphene.
    Wang M; Kim M; Odkhuu D; Lee J; Jang WJ; Kahng SJ; Park N; Ruoff RS; Song YJ; Lee S
    ACS Nano; 2014 Jun; 8(6):5478-83. PubMed ID: 24870706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition.
    Meng JH; Zhang XW; Wang HL; Ren XB; Jin CH; Yin ZG; Liu X; Liu H
    Nanoscale; 2015 Oct; 7(38):16046-53. PubMed ID: 26371688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices.
    Kim KK; Hsu A; Jia X; Kim SM; Shi Y; Dresselhaus M; Palacios T; Kong J
    ACS Nano; 2012 Oct; 6(10):8583-90. PubMed ID: 22970651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective growth of graphene in layer-by-layer via chemical vapor deposition.
    Park J; An H; Choi DC; Hussain S; Song W; An KS; Lee WJ; Lee N; Lee WG; Jung J
    Nanoscale; 2016 Aug; 8(30):14633-42. PubMed ID: 27436358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains.
    Wu Q; Park JH; Park S; Jung SJ; Suh H; Park N; Wongwiriyapan W; Lee S; Lee YH; Song YJ
    Sci Rep; 2015 Nov; 5():16159. PubMed ID: 26537788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor.
    Shin HC; Jang Y; Kim TH; Lee JH; Oh DH; Ahn SJ; Lee JH; Moon Y; Park JH; Yoo SJ; Park CY; Whang D; Yang CW; Ahn JR
    J Am Chem Soc; 2015 Jun; 137(21):6897-905. PubMed ID: 25973636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition.
    Procházka P; Mach J; Bischoff D; Lišková Z; Dvořák P; Vaňatka M; Simonet P; Varlet A; Hemzal D; Petrenec M; Kalina L; Bartošík M; Ensslin K; Varga P; Čechal J; Šikola T
    Nanotechnology; 2014 May; 25(18):185601. PubMed ID: 24739598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of copper thin film loss during graphene synthesis.
    Lee AL; Tao L; Akinwande D
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1527-32. PubMed ID: 25552194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area monolayer hexagonal boron nitride on Pt foil.
    Park JH; Park JC; Yun SJ; Kim H; Luong DH; Kim SM; Choi SH; Yang W; Kong J; Kim KK; Lee YH
    ACS Nano; 2014 Aug; 8(8):8520-8. PubMed ID: 25094030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene.
    Ago H; Ogawa Y; Tsuji M; Mizuno S; Hibino H
    J Phys Chem Lett; 2012 Aug; 3(16):2228-36. PubMed ID: 26295775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer-Free, Large-Scale Growth of High-Quality Graphene on Insulating Substrate by Physical Contact of Copper Foil.
    Song I; Park Y; Cho H; Choi HC
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15374-15378. PubMed ID: 30267452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of Cu Lattices on the Structure and Electrical Properties of Graphene Domains during Low-Pressure Chemical Vapor Deposition.
    Kim DW; Kim SJ; Kim JS; Shin M; Kim GT; Jung HT
    Chemphyschem; 2015 Apr; 16(6):1165-71. PubMed ID: 25470249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some Like It Flat: Decoupled h-BN Monolayer Substrates for Aligned Graphene Growth.
    Roth S; Greber T; Osterwalder J
    ACS Nano; 2016 Dec; 10(12):11187-11195. PubMed ID: 28024350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.