BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26006184)

  • 1. Mitochondrially targeted redox probe reveals the variations in oxidative capacity of the haematopoietic cells.
    Kaur A; Brigden KW; Cashman TF; Fraser ST; New EJ
    Org Biomol Chem; 2015 Jun; 13(24):6686-9. PubMed ID: 26006184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytometric assessment of mitochondria using fluorescent probes.
    Cottet-Rousselle C; Ronot X; Leverve X; Mayol JF
    Cytometry A; 2011 Jun; 79(6):405-25. PubMed ID: 21595013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of Hematopoietic Cell Differentiation with a Ratiometric and Reversible Sensor of Mitochondrial Reactive Oxygen Species.
    Kaur A; Jankowska K; Pilgrim C; Fraser ST; New EJ
    Antioxid Redox Signal; 2016 May; 24(13):667-79. PubMed ID: 26865422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions.
    Hirosawa S; Arai S; Takeoka S
    Chem Commun (Camb); 2012 May; 48(40):4845-7. PubMed ID: 22506265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione.
    Sun C; Du W; Wang P; Wu Y; Wang B; Wang J; Xie W
    Biochem Biophys Res Commun; 2017 Dec; 494(3-4):518-525. PubMed ID: 29079191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of mitochondrially targeted gallic acid in reducing brain mitochondrial oxidative damage.
    Parihar P; Jat D; Ghafourifar P; Parihar MS
    Cell Mol Biol (Noisy-le-grand); 2014 Jul; 60(2):35-41. PubMed ID: 24998301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term thiol monitoring in living cells using bioorthogonal chemistry.
    Rong L; Zhang C; Lei Q; Sun HL; Qin SY; Feng J; Zhang XZ
    Chem Commun (Camb); 2015; 51(2):388-90. PubMed ID: 25407796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated 'pro-probes'.
    Calatrava-Pérez E; Bright SA; Achermann S; Moylan C; Senge MO; Veale EB; Williams DC; Gunnlaugsson T; Scanlan EM
    Chem Commun (Camb); 2016 Nov; 52(89):13086-13089. PubMed ID: 27722254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side.
    Prieto-Bermejo R; Romo-González M; Pérez-Fernández A; Ijurko C; Hernández-Hernández Á
    J Exp Clin Cancer Res; 2018 Jun; 37(1):125. PubMed ID: 29940987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly selective ratiometric fluorescent probe for Au3+ and its application to bioimaging.
    Choi JY; Kim GH; Guo Z; Lee HY; Swamy KM; Pai J; Shin S; Shin I; Yoon J
    Biosens Bioelectron; 2013 Nov; 49():438-41. PubMed ID: 23810913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome.
    Grosser E; Hirt U; Janc OA; Menzfeld C; Fischer M; Kempkes B; Vogelgesang S; Manzke TU; Opitz L; Salinas-Riester G; Müller M
    Neurobiol Dis; 2012 Oct; 48(1):102-14. PubMed ID: 22750529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of the Generation of ONOO
    Li H; Li X; Wu X; Shi W; Ma H
    Anal Chem; 2017 May; 89(10):5519-5525. PubMed ID: 28436652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic, in vivo, real-time detection of retinal oxidative status in a model of elevated intraocular pressure using a novel, reversibly responsive, profluorescent nitroxide probe.
    Rayner CL; Gole GA; Bottle SE; Barnett NL
    Exp Eye Res; 2014 Dec; 129():48-56. PubMed ID: 25447708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted fluorescent probes for detection of oxidative stress in the mitochondria.
    Yapici NB; Mandalapu S; Gibson KM; Bi L
    Bioorg Med Chem Lett; 2015 Sep; 25(17):3476-80. PubMed ID: 26189896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascorbate as a "redox sensor" and protector against irradiation-induced oxidative stress in 32D CL 3 hematopoietic cells and subclones overexpressing human manganese superoxide dismutase.
    Epperly MW; Osipov AN; Martin I; Kawai KK; Borisenko GG; Tyurina YY; Jefferson M; Bernarding M; Greenberger JS; Kagan VE
    Int J Radiat Oncol Biol Phys; 2004 Mar; 58(3):851-61. PubMed ID: 14967442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel fluorescent sensor for detection of highly reactive oxygen species, and for imaging such endogenous hROS in the mitochondria of living cells.
    Liu F; Wu T; Cao J; Zhang H; Hu M; Sun S; Song F; Fan J; Wang J; Peng X
    Analyst; 2013 Feb; 138(3):775-8. PubMed ID: 23232359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes.
    Yeow J; Kaur A; Anscomb MD; New EJ
    Chem Commun (Camb); 2014 Aug; 50(60):8181-4. PubMed ID: 24926565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ratiometric fluorescent probe with unexpected high selectivity for ATP and its application in cell imaging.
    Tang JL; Li CY; Li YF; Zou CX
    Chem Commun (Camb); 2014 Dec; 50(97):15411-4. PubMed ID: 25350832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.