These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 26006189)

  • 1. Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology.
    Poon AF
    Mol Biol Evol; 2015 Sep; 32(9):2483-95. PubMed ID: 26006189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of Transmission Network Structure from HIV Phylogenetic Trees.
    Giardina F; Romero-Severson EO; Albert J; Britton T; Leitner T
    PLoS Comput Biol; 2017 Jan; 13(1):e1005316. PubMed ID: 28085876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylodynamic Inference across Epidemic Scales.
    Volz EM; Romero-Severson E; Leitner T
    Mol Biol Evol; 2017 May; 34(5):1276-1288. PubMed ID: 28204593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylodynamic inference and model assessment with approximate bayesian computation: influenza as a case study.
    Ratmann O; Donker G; Meijer A; Fraser C; Koelle K
    PLoS Comput Biol; 2012; 8(12):e1002835. PubMed ID: 23300420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing contact network parameters from viral phylogenies.
    McCloskey RM; Liang RH; Poon AF
    Virus Evol; 2016 Jul; 2(2):vew029. PubMed ID: 27818787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Donor-Recipient Identification in Para- and Poly-phyletic Trees Under Alternative HIV-1 Transmission Hypotheses Using Approximate Bayesian Computation.
    Romero-Severson EO; Bulla I; Hengartner N; Bártolo I; Abecasis A; Azevedo-Pereira JM; Taveira N; Leitner T
    Genetics; 2017 Nov; 207(3):1089-1101. PubMed ID: 28912340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the use of kernel approximate Bayesian computation to infer population history.
    Nakagome S
    Genes Genet Syst; 2015; 90(3):153-62. PubMed ID: 26510570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models.
    Popinga A; Vaughan T; Stadler T; Drummond AJ
    Genetics; 2015 Feb; 199(2):595-607. PubMed ID: 25527289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods.
    Duchene S; Duchene DA; Geoghegan JL; Dyson ZA; Hawkey J; Holt KE
    BMC Evol Biol; 2018 Jun; 18(1):95. PubMed ID: 29914372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamentals and Recent Developments in Approximate Bayesian Computation.
    Lintusaari J; Gutmann MU; Dutta R; Kaski S; Corander J
    Syst Biol; 2017 Jan; 66(1):e66-e82. PubMed ID: 28175922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study.
    Saulnier E; Gascuel O; Alizon S
    PLoS Comput Biol; 2017 Mar; 13(3):e1005416. PubMed ID: 28263987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online Bayesian Phylodynamic Inference in BEAST with Application to Epidemic Reconstruction.
    Gill MS; Lemey P; Suchard MA; Rambaut A; Baele G
    Mol Biol Evol; 2020 Jun; 37(6):1832-1842. PubMed ID: 32101295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV with contact tracing: a case study in approximate Bayesian computation.
    Blum MG; Tran VC
    Biostatistics; 2010 Oct; 11(4):644-60. PubMed ID: 20457785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AABC: approximate approximate Bayesian computation for inference in population-genetic models.
    Buzbas EO; Rosenberg NA
    Theor Popul Biol; 2015 Feb; 99():31-42. PubMed ID: 25261426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernel approximate Bayesian computation in population genetic inferences.
    Nakagome S; Fukumizu K; Mano S
    Stat Appl Genet Mol Biol; 2013 Dec; 12(6):667-78. PubMed ID: 24150124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylodynamics of HIV-1 subtype F1 in Angola, Brazil and Romania.
    Bello G; Afonso JM; Morgado MG
    Infect Genet Evol; 2012 Jul; 12(5):1079-86. PubMed ID: 22484759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian phylodynamic inference with complex models.
    Volz EM; Siveroni I
    PLoS Comput Biol; 2018 Nov; 14(11):e1006546. PubMed ID: 30422979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylodynamics with Migration: A Computational Framework to Quantify Population Structure from Genomic Data.
    Kühnert D; Stadler T; Vaughan TG; Drummond AJ
    Mol Biol Evol; 2016 Aug; 33(8):2102-16. PubMed ID: 27189573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses.
    Poon AF; Walker LW; Murray H; McCloskey RM; Harrigan PR; Liang RH
    PLoS One; 2013; 8(11):e78122. PubMed ID: 24223766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a current hot spot of HIV type 1 transmission in Mongolia by molecular epidemiological analysis.
    Davaalkham J; Unenchimeg P; Baigalmaa C; Erdenetuya G; Nyamkhuu D; Shiino T; Tsuchiya K; Hayashida T; Gatanaga H; Oka S
    AIDS Res Hum Retroviruses; 2011 Oct; 27(10):1073-80. PubMed ID: 21417756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.