These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 26006189)
1. Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology. Poon AF Mol Biol Evol; 2015 Sep; 32(9):2483-95. PubMed ID: 26006189 [TBL] [Abstract][Full Text] [Related]
2. Inference of Transmission Network Structure from HIV Phylogenetic Trees. Giardina F; Romero-Severson EO; Albert J; Britton T; Leitner T PLoS Comput Biol; 2017 Jan; 13(1):e1005316. PubMed ID: 28085876 [TBL] [Abstract][Full Text] [Related]
6. Donor-Recipient Identification in Para- and Poly-phyletic Trees Under Alternative HIV-1 Transmission Hypotheses Using Approximate Bayesian Computation. Romero-Severson EO; Bulla I; Hengartner N; Bártolo I; Abecasis A; Azevedo-Pereira JM; Taveira N; Leitner T Genetics; 2017 Nov; 207(3):1089-1101. PubMed ID: 28912340 [TBL] [Abstract][Full Text] [Related]
7. On the use of kernel approximate Bayesian computation to infer population history. Nakagome S Genes Genet Syst; 2015; 90(3):153-62. PubMed ID: 26510570 [TBL] [Abstract][Full Text] [Related]
8. Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models. Popinga A; Vaughan T; Stadler T; Drummond AJ Genetics; 2015 Feb; 199(2):595-607. PubMed ID: 25527289 [TBL] [Abstract][Full Text] [Related]
9. Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods. Duchene S; Duchene DA; Geoghegan JL; Dyson ZA; Hawkey J; Holt KE BMC Evol Biol; 2018 Jun; 18(1):95. PubMed ID: 29914372 [TBL] [Abstract][Full Text] [Related]
11. Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study. Saulnier E; Gascuel O; Alizon S PLoS Comput Biol; 2017 Mar; 13(3):e1005416. PubMed ID: 28263987 [TBL] [Abstract][Full Text] [Related]
12. Online Bayesian Phylodynamic Inference in BEAST with Application to Epidemic Reconstruction. Gill MS; Lemey P; Suchard MA; Rambaut A; Baele G Mol Biol Evol; 2020 Jun; 37(6):1832-1842. PubMed ID: 32101295 [TBL] [Abstract][Full Text] [Related]
13. HIV with contact tracing: a case study in approximate Bayesian computation. Blum MG; Tran VC Biostatistics; 2010 Oct; 11(4):644-60. PubMed ID: 20457785 [TBL] [Abstract][Full Text] [Related]
14. AABC: approximate approximate Bayesian computation for inference in population-genetic models. Buzbas EO; Rosenberg NA Theor Popul Biol; 2015 Feb; 99():31-42. PubMed ID: 25261426 [TBL] [Abstract][Full Text] [Related]
15. Kernel approximate Bayesian computation in population genetic inferences. Nakagome S; Fukumizu K; Mano S Stat Appl Genet Mol Biol; 2013 Dec; 12(6):667-78. PubMed ID: 24150124 [TBL] [Abstract][Full Text] [Related]
16. Phylodynamics of HIV-1 subtype F1 in Angola, Brazil and Romania. Bello G; Afonso JM; Morgado MG Infect Genet Evol; 2012 Jul; 12(5):1079-86. PubMed ID: 22484759 [TBL] [Abstract][Full Text] [Related]
18. Phylodynamics with Migration: A Computational Framework to Quantify Population Structure from Genomic Data. Kühnert D; Stadler T; Vaughan TG; Drummond AJ Mol Biol Evol; 2016 Aug; 33(8):2102-16. PubMed ID: 27189573 [TBL] [Abstract][Full Text] [Related]
19. Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. Poon AF; Walker LW; Murray H; McCloskey RM; Harrigan PR; Liang RH PLoS One; 2013; 8(11):e78122. PubMed ID: 24223766 [TBL] [Abstract][Full Text] [Related]
20. Identification of a current hot spot of HIV type 1 transmission in Mongolia by molecular epidemiological analysis. Davaalkham J; Unenchimeg P; Baigalmaa C; Erdenetuya G; Nyamkhuu D; Shiino T; Tsuchiya K; Hayashida T; Gatanaga H; Oka S AIDS Res Hum Retroviruses; 2011 Oct; 27(10):1073-80. PubMed ID: 21417756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]