These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 26006225)
21. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Bothe H; Schmitz O; Yates MG; Newton WE Microbiol Mol Biol Rev; 2010 Dec; 74(4):529-51. PubMed ID: 21119016 [TBL] [Abstract][Full Text] [Related]
22. Approaches to developing biological H(2)-photoproducing organisms and processes. Ghirardi ML; King PW; Posewitz MC; Maness PC; Fedorov A; Kim K; Cohen J; Schulten K; Seibert M Biochem Soc Trans; 2005 Feb; 33(Pt 1):70-2. PubMed ID: 15667268 [TBL] [Abstract][Full Text] [Related]
23. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Ihara M; Nishihara H; Yoon KS; Lenz O; Friedrich B; Nakamoto H; Kojima K; Honma D; Kamachi T; Okura I Photochem Photobiol; 2006; 82(3):676-82. PubMed ID: 16542111 [TBL] [Abstract][Full Text] [Related]
24. Biomimetic and microbial approaches to solar fuel generation. Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805 [TBL] [Abstract][Full Text] [Related]
25. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Wang M; Chen L; Li X; Sun L Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599 [TBL] [Abstract][Full Text] [Related]
26. Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120. Avilan L; Roumezi B; Risoul V; Bernard CS; Kpebe A; Belhadjhassine M; Rousset M; Brugna M; Latifi A Appl Microbiol Biotechnol; 2018 Jul; 102(13):5775-5783. PubMed ID: 29691627 [TBL] [Abstract][Full Text] [Related]
27. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli. Kim JY; Jo BH; Cha HJ Microb Cell Fact; 2010 Jul; 9():54. PubMed ID: 20604966 [TBL] [Abstract][Full Text] [Related]
28. High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. Kuchenreuther JM; Grady-Smith CS; Bingham AS; George SJ; Cramer SP; Swartz JR PLoS One; 2010 Nov; 5(11):e15491. PubMed ID: 21124800 [TBL] [Abstract][Full Text] [Related]
29. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Esselborn J; Lambertz C; Adamska-Venkates A; Simmons T; Berggren G; Noth J; Siebel J; Hemschemeier A; Artero V; Reijerse E; Fontecave M; Lubitz W; Happe T Nat Chem Biol; 2013 Oct; 9(10):607-609. PubMed ID: 23934246 [TBL] [Abstract][Full Text] [Related]
30. The mechanism of inhibition by H2 of H2-evolution by hydrogenases. Fourmond V; Baffert C; Sybirna K; Dementin S; Abou-Hamdan A; Meynial-Salles I; Soucaille P; Bottin H; Léger C Chem Commun (Camb); 2013 Aug; 49(61):6840-2. PubMed ID: 23792933 [TBL] [Abstract][Full Text] [Related]
31. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. Barz M; Beimgraben C; Staller T; Germer F; Opitz F; Marquardt C; Schwarz C; Gutekunst K; Vanselow KH; Schmitz R; LaRoche J; Schulz R; Appel J PLoS One; 2010 Nov; 5(11):e13846. PubMed ID: 21079771 [TBL] [Abstract][Full Text] [Related]
32. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Calusinska M; Happe T; Joris B; Wilmotte A Microbiology (Reading); 2010 Jun; 156(Pt 6):1575-1588. PubMed ID: 20395274 [TBL] [Abstract][Full Text] [Related]
33. Contributions of the [NiFe]- and [FeFe]-hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H(2). Kreuzer HW; Hill EA; Moran JJ; Bartholomew RA; Yang H; Hegg EL FEMS Microbiol Lett; 2014 Mar; 352(1):18-24. PubMed ID: 24372594 [TBL] [Abstract][Full Text] [Related]
34. Genome-Scale Mining of Acetogens of the Genus Di Leonardo PF; Antonicelli G; Agostino V; Re A Microbiol Spectr; 2022 Aug; 10(4):e0101922. PubMed ID: 35735976 [TBL] [Abstract][Full Text] [Related]
35. [FeFe]-Hydrogenases: recent developments and future perspectives. Wittkamp F; Senger M; Stripp ST; Apfel UP Chem Commun (Camb); 2018 Jun; 54(47):5934-5942. PubMed ID: 29726568 [TBL] [Abstract][Full Text] [Related]
36. [Recent advances on the structure and catalytic mechanism of hydrogenase]. Liu JJ; Long MN Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):348-53. PubMed ID: 16108354 [TBL] [Abstract][Full Text] [Related]
37. Integrated thermodynamic analysis of electron bifurcating [FeFe]-hydrogenase to inform anaerobic metabolism and H Jay ZJ; Hunt KA; Chou KJ; Schut GJ; Maness PC; Adams MWW; Carlson RP Biochim Biophys Acta Bioenerg; 2020 Jan; 1861(1):148087. PubMed ID: 31669490 [TBL] [Abstract][Full Text] [Related]
38. Delivery of iron-sulfur clusters to the hydrogen-oxidizing [NiFe]-hydrogenases in Escherichia coli requires the A-type carrier proteins ErpA and IscA. Pinske C; Sawers RG PLoS One; 2012; 7(2):e31755. PubMed ID: 22363723 [TBL] [Abstract][Full Text] [Related]
39. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway. Agapakis CM; Silver PA Bioeng Bugs; 2010; 1(6):413-8. PubMed ID: 21468209 [TBL] [Abstract][Full Text] [Related]
40. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Srirangan K; Pyne ME; Perry Chou C Bioresour Technol; 2011 Sep; 102(18):8589-604. PubMed ID: 21514821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]