These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2600629)

  • 1. Task and fatigue effects on low-threshold motor units in human hand muscle.
    Enoka RM; Robinson GA; Kossev AR
    J Neurophysiol; 1989 Dec; 62(6):1344-59. PubMed ID: 2600629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discharge characteristics of biceps brachii motor units at recruitment when older adults sustained an isometric contraction.
    Pascoe MA; Holmes MR; Enoka RM
    J Neurophysiol; 2011 Feb; 105(2):571-81. PubMed ID: 21160000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural control of muscle force: indications from a simulation model.
    Contessa P; De Luca CJ
    J Neurophysiol; 2013 Mar; 109(6):1548-70. PubMed ID: 23236008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterising sex-related differences in lower- and higher-threshold motor unit behaviour through high-density surface electromyography.
    Lecce E; Conti A; Nuccio S; Felici F; Bazzucchi I
    Exp Physiol; 2024 Jun; ():. PubMed ID: 38888901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing motor unit number index of the first dorsal interosseous muscle with two different contraction tasks.
    Zhou P; Li X; Rymer WZ
    Med Eng Phys; 2012 Oct; 34(8):1209-12. PubMed ID: 22818404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short term effects of contralateral tendon vibration on motor unit discharge rate variability and force steadiness in people with Parkinson's disease.
    Kim C; Wile DJ; Kraeutner SN; Larocque KA; Jakobi JM
    Front Aging Neurosci; 2024; 16():1301012. PubMed ID: 38529054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacing Motor Units in Nonhuman Primates Identifies a Principal Neural Component for Force Control Constrained by the Size Principle.
    Del Vecchio A; Jones RHA; Schofield IS; Kinfe TM; Ibáñez J; Farina D; Baker SN
    J Neurosci; 2022 Sep; 42(39):7386-7399. PubMed ID: 35999052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fatigue on intramuscle force-stabilizing synergies.
    Ricotta JM; De SD; Nardon M; Benamati A; Latash ML
    J Appl Physiol (1985); 2023 Nov; 135(5):1023-1035. PubMed ID: 37732378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased reaction times and reduced response preparation already starts at middle age.
    Wolkorte R; Kamphuis J; Zijdewind I
    Front Aging Neurosci; 2014; 6():79. PubMed ID: 24808862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-load blood flow restriction reduces time-to-minimum single motor unit discharge rate.
    Lowe TW; Tenan MS; Shah K; Griffin L
    Exp Brain Res; 2023 Dec; 241(11-12):2795-2805. PubMed ID: 37874365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustments in the motor unit discharge behavior following neuromuscular electrical stimulation compared to voluntary contractions.
    Borzuola R; Nuccio S; Scalia M; Parrella M; Del Vecchio A; Bazzucchi I; Felici F; Macaluso A
    Front Physiol; 2023; 14():1212453. PubMed ID: 37324379
    [No Abstract]   [Full Text] [Related]  

  • 12. Motor unit-based synergies in a non-compartmentalized muscle.
    Ricotta JM; Nardon M; De SD; Jiang J; Graziani W; Latash ML
    Exp Brain Res; 2023 May; 241(5):1367-1379. PubMed ID: 37017728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergies at the level of motor units in single-finger and multi-finger tasks.
    Madarshahian S; Latash ML
    Exp Brain Res; 2021 Sep; 239(9):2905-2923. PubMed ID: 34312703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-related modulation of low-frequency common drive to motor units.
    Hwang IS; Lin YT; Huang CC; Chen YC
    Eur J Appl Physiol; 2020 Jun; 120(6):1305-1317. PubMed ID: 32297005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillations in neural drive and age-related reductions in force steadiness with a cognitive challenge.
    Pereira HM; Schlinder-DeLap B; Keenan KG; Negro F; Farina D; Hyngstrom AS; Nielson KA; Hunter SK
    J Appl Physiol (1985); 2019 Apr; 126(4):1056-1065. PubMed ID: 30817244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fatiguing, submaximal high- versus low-torque isometric exercise on motor unit recruitment and firing behavior.
    Muddle TWD; Colquhoun RJ; Magrini MA; Luera MJ; DeFreitas JM; Jenkins NDM
    Physiol Rep; 2018 Apr; 6(8):e13675. PubMed ID: 29673119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution from motor unit firing adaptations and muscle coactivation during fatigue.
    Contessa P; Letizi J; De Luca G; Kline JC
    J Neurophysiol; 2018 Jun; 119(6):2186-2193. PubMed ID: 29537913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.
    Feeney DF; Meyer FG; Noone N; Enoka RM
    J Neurophysiol; 2017 Oct; 118(4):2238-2250. PubMed ID: 28768739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A motor unit-based model of muscle fatigue.
    Potvin JR; Fuglevand AJ
    PLoS Comput Biol; 2017 Jun; 13(6):e1005581. PubMed ID: 28574981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception.
    Chen YC; Lin YT; Chang GC; Hwang IS
    Front Physiol; 2017; 8():140. PubMed ID: 28348530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.