BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26007169)

  • 1. Classification of Sparkling Wine Style and Quality by MIR Spectroscopy.
    Culbert J; Cozzolino D; Ristic R; Wilkinson K
    Molecules; 2015 May; 20(5):8341-56. PubMed ID: 26007169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Production Method on the Chemical Composition, Foaming Properties, and Quality of Australian Carbonated and Sparkling White Wines.
    Culbert JA; McRae JM; Condé BC; Schmidtke LM; Nicholson EL; Smith PA; Howell KS; Boss PK; Wilkinson KL
    J Agric Food Chem; 2017 Feb; 65(7):1378-1386. PubMed ID: 28128557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trained and consumer panel evaluation of sparkling wines sweetened to brut or demi sec residual sugar levels with three different sugars.
    McMahon KM; Diako C; Aplin J; Mattinson DS; Culver C; Ross CF
    Food Res Int; 2017 Sep; 99(Pt 1):173-185. PubMed ID: 28784474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination between Shiraz wines from different Australian regions: the role of spectroscopy and chemometrics.
    Riovanto R; Cynkar WU; Berzaghi P; Cozzolino D
    J Agric Food Chem; 2011 Sep; 59(18):10356-60. PubMed ID: 21842866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Australian Consumers' Perceptions of and Preferences for Different Styles of Sparkling Wine Using the Fine Wine Instrument.
    Verdonk N; Ristic R; Culbert JA; Pearce K; Wilkinson KL
    Foods; 2021 Feb; 10(3):. PubMed ID: 33668359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics.
    Fudge AL; Wilkinson KL; Ristic R; Cozzolino D
    J Agric Food Chem; 2012 Jan; 60(1):52-9. PubMed ID: 22129211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts.
    Edelmann A; Diewok J; Schuster KC; Lendl B
    J Agric Food Chem; 2001 Mar; 49(3):1139-45. PubMed ID: 11312825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of wine sensory properties using mid-infrared spectra of Cabernet Sauvignon and Chardonnay grape berries and wines.
    Niimi J; Liland KH; Tomic O; Jeffery DW; Bastian SEP; Boss PK
    Food Chem; 2021 May; 344():128634. PubMed ID: 33261995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy.
    Zaukuu JZ; Soós J; Bodor Z; Felföldi J; Magyar I; Kovacs Z
    J Food Sci; 2019 Dec; 84(12):3437-3444. PubMed ID: 31762045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparkling wines: features and trends from tradition.
    Buxaderas S; López-Tamames E
    Adv Food Nutr Res; 2012; 66():1-45. PubMed ID: 22909977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms.
    Hu L; Yin C; Ma S; Liu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():574-581. PubMed ID: 30075438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geographic classification of spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis.
    Liu L; Cozzolino D; Cynkar WU; Gishen M; Colby CB
    J Agric Food Chem; 2006 Sep; 54(18):6754-9. PubMed ID: 16939336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of wine tannin classification using Fourier transform mid-infrared spectrometry and sensory analysis.
    Fernández K; Labarca X; Bordeu E; Guesalaga A; Agosin E
    Appl Spectrosc; 2007 Nov; 61(11):1163-7. PubMed ID: 18028694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines.
    Kemp B; Condé B; Jégou S; Howell K; Vasserot Y; Marchal R
    Crit Rev Food Sci Nutr; 2019; 59(13):2072-2094. PubMed ID: 29420057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different measurement techniques and variable selection methods for FT-MIR in wine analysis.
    Friedel M; Patz CD; Dietrich H
    Food Chem; 2013 Dec; 141(4):4200-7. PubMed ID: 23993606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties.
    Garofalo C; Berbegal C; Grieco F; Tufariello M; Spano G; Capozzi V
    Int J Food Microbiol; 2018 Nov; 285():7-17. PubMed ID: 30007201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation through E-nose and GC-FID data modeling of rosé sparkling wines elaborated via traditional and Charmat methods.
    Muñoz-Castells R; Modesti M; Moreno-García J; Rodríguez-Moreno M; Catini A; Capuano R; Di Natale C; Bellincontro A; Moreno J
    J Sci Food Agric; 2023 Nov; ():. PubMed ID: 38018373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Merging vibrational spectroscopic data for wine classification according to the geographic origin.
    Teixeira Dos Santos CA; Páscoa RNMJ; Sarraguça MC; Porto PALS; Cerdeira AL; González-Sáiz JM; Pizarro C; Lopes JA
    Food Res Int; 2017 Dec; 102():504-510. PubMed ID: 29195978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory and analytical study of rose sparkling wines manufactured by second fermentation in the bottle.
    Hidalgo P; Pueyo E; Pozo-Bayón MA; Martínez-Rodríguez AJ; Martín-Alvarez P; Polo MC
    J Agric Food Chem; 2004 Oct; 52(21):6640-5. PubMed ID: 15479034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines.
    Sen I; Ozturk B; Tokatli F; Ozen B
    Talanta; 2016 Dec; 161():130-137. PubMed ID: 27769388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.