These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 26007201)

  • 1. A feasibility study of a rotary planar electrode array for electrical impedance mammography using a digital breast phantom.
    Zhang X; Chatwin C; Barber DC
    Physiol Meas; 2015 Jun; 36(6):1311-35. PubMed ID: 26007201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An image reconstruction algorithm for 3-D electrical impedance mammography.
    Zhang X; Wang W; Sze G; Barber D; Chatwin C
    IEEE Trans Med Imaging; 2014 Dec; 33(12):2223-41. PubMed ID: 25014954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.
    Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A
    Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A feasibility study of magnetic resonance driven electrical impedance tomography using a phantom.
    Wan Y; Negishi M; Constable RT
    Physiol Meas; 2013 Jun; 34(6):623-44. PubMed ID: 23719063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling, validation and application of a mathematical tissue-equivalent breast phantom for linear slot-scanning digital mammography.
    Hussein K; Vaughan CL; Douglas TS
    Phys Med Biol; 2009 Mar; 54(6):1533-53. PubMed ID: 19229099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compensated radiolucent electrode array for combined EIT and mammography.
    Kao TJ; Saulnier GJ; Xia H; Tamma C; Newell JC; Isaacson D
    Physiol Meas; 2007 Jul; 28(7):S291-9. PubMed ID: 17664644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of anomaly detection and characterization using trans-admittance mammography with 60 × 60 electrode array.
    Zhao M; Wi H; Lee EJ; Woo EJ; Oh TI
    Phys Med Biol; 2014 Oct; 59(19):5831-47. PubMed ID: 25207623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High density trans-admittance mammography development and preliminary phantom tests.
    Zhao M; Wi H; Mostofa Kamal AH; McEwan AL; Woo EJ; Oh TI
    Biomed Eng Online; 2012 Sep; 11():75. PubMed ID: 23009288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model observer study using acquired mammographic images of an anthropomorphic breast phantom.
    Balta C; Bouwman RW; Sechopoulos I; Broeders MJM; Karssemeijer N; van Engen RE; Veldkamp WJH
    Med Phys; 2018 Feb; 45(2):655-665. PubMed ID: 29193129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A realistic pelvic phantom for electrical impedance measurement.
    Dunne E; McGinley B; O'Halloran M; Porter E
    Physiol Meas; 2018 Mar; 39(3):034001. PubMed ID: 29271359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A simulation study of electrical impedance scan-imaging based on a phantom].
    Ji ZY; Fu F; Shi XT; Liu RG; Dong XZ; You FS; Wang K
    Space Med Med Eng (Beijing); 2005 Apr; 18(2):130-4. PubMed ID: 15977393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography.
    Lee BI; Oh SH; Kim TS; Woo EJ; Lee SY; Kwon O; Seo JK
    Phys Med Biol; 2006 Jan; 51(2):443-55. PubMed ID: 16394349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast cancer detection using high-density flexible electrode arrays and electrical impedance tomography.
    Campisi MS; Barbre C; Chola A; Cunningham G; Woods V; Viventi J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1131-4. PubMed ID: 25570162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A resistive mesh phantom for assessing the performance of EIT systems.
    Gagnon H; Cousineau M; Adler A; Hartinger AE
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2257-66. PubMed ID: 20550982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrical impedance spectroscopy system for breast cancer detection.
    Saulnier GJ; Liu N; Tamma C; Xia H; Kao TJ; Newell JC; Isaacson D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4154-7. PubMed ID: 18002917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-frequency EIT system design based on telecommunication signal processors.
    Robitaille N; Guardo R; Maurice I; Hartinger AE; Gagnon H
    Physiol Meas; 2009 Jun; 30(6):S57-71. PubMed ID: 19491440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complete electrode model for EIT in a mammography geometry.
    Kim BS; Boverman G; Newell JC; Saulnier GJ; Isaacson D
    Physiol Meas; 2007 Jul; 28(7):S57-69. PubMed ID: 17664648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focused current density imaging using internal electrode in magnetic resonance electrical impedance tomography (MREIT).
    Jeong WC; Sajib S; Kim HJ; Kwon OI
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):1938-46. PubMed ID: 24956612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.