These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 26007201)

  • 41. A new six-electrode electrical impedance technique for probing deep organs in the human body.
    Roy SK; Karal MAS; Kadir MA; Rabbani KS
    Eur Biophys J; 2019 Dec; 48(8):711-719. PubMed ID: 31529144
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microneedle Electrode Array for Electrical Impedance Myography to Characterize Neurogenic Myopathy.
    Li Z; Li Y; Liu M; Cui L; Yu Y
    Ann Biomed Eng; 2016 May; 44(5):1566-75. PubMed ID: 26407702
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simplified model of mammography geometry for breast cancer imaging with electrical impedance tomography.
    Choi MH; Kao TJ; Isaacson D; Saulnier GJ; Newell JC
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1310-3. PubMed ID: 17271932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Incorporating a biopsy needle as an electrode in transrectal electrical impedance imaging.
    Wan Y; Borsic A; Hartov A; Halter R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6220-3. PubMed ID: 23367350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Instrumental Electrode Configuration for 3D Ultrasound Modulated Electrical Impedance Tomography.
    Song X; Xu Y; Dong F; Witte RS
    IEEE Sens J; 2017; 17(24):8206-8214. PubMed ID: 29531503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hyperaemia evaluation in clinical diathermy by four-electrode impedance measurements.
    Olmi R; Bini M; Ignesti A; Feroldi P; Spiazzi L; Bodini G
    Phys Med Biol; 1997 Jan; 42(1):251-61. PubMed ID: 9015821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gradient-based impedance synthesis for breast and lung cancer cell screening deploying planar and nano-structured electrodes.
    Aslam MA; Riaz K; Saleem MM
    Med Biol Eng Comput; 2021 Sep; 59(9):1709-1721. PubMed ID: 34235607
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feasibility Experiments to Detect Skin Hydration Using a Bio-Impedance Sensor.
    Sunny AI; Kallos E; Kosmas P; Rahman M; Koutsoupidou M; Cano-Garcia H; Thanou M; Rafique W; Lipscombe O; Kassanos P; Triantis I
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6032-6035. PubMed ID: 31947221
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging.
    Yang Y; Jia J
    Rev Sci Instrum; 2017 Aug; 88(8):085110. PubMed ID: 28863695
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conception of a Phantom in Agar-Agar Gel with the Same Bio-Impedance Properties as Human Quadriceps.
    Peixoto M; Moreno MV; Khider N
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel lead configurations for robust bio-impedance acquisition.
    Ironstone J; Graovac M; Martens J; Rozee M; Smith KC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2764-7. PubMed ID: 18002567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of the performance of commercial ultrasound breast scanners versus a laboratory instrument.
    Baum G
    J Clin Ultrasound; 1983 Oct; 11(8):405-13. PubMed ID: 6417169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Design of magneto-acoustic-electrical detection system and verification of its linear sweep theory].
    Dai M; Chen S; Li F; Chen M; Lin H; Chen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Feb; 35(1):99-105. PubMed ID: 29745608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design of a New Seismoelectric Logging Instrument.
    Zhang L; Ju X; Lu J; Men B; He W
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phantom breast.
    ACKERLY W; LHAMON W; FITTS WT
    J Nerv Ment Dis; 1955 Feb; 121(2):177-8. PubMed ID: 14381903
    [No Abstract]   [Full Text] [Related]  

  • 56. Electrical Impedance Tomography Technical Contributions for Detection and 3D Geometric Localization of Breast Tumors: A Systematic Review.
    Gómez-Cortés JC; Díaz-Carmona JJ; Padilla-Medina JA; Calderon AE; Gutiérrez AIB; Gutiérrez-López M; Prado-Olivarez J
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457801
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Absolute Reconstructions Using Rotational Electrical Impedance Tomography for Breast Cancer Imaging.
    Murphy EK; Mahara A; Halter RJ
    IEEE Trans Med Imaging; 2017 Apr; 36(4):892-903. PubMed ID: 28113311
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A feasibility study of a rotary planar electrode array for electrical impedance mammography using a digital breast phantom.
    Zhang X; Chatwin C; Barber DC
    Physiol Meas; 2015 Jun; 36(6):1311-35. PubMed ID: 26007201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An image reconstruction algorithm for 3-D electrical impedance mammography.
    Zhang X; Wang W; Sze G; Barber D; Chatwin C
    IEEE Trans Med Imaging; 2014 Dec; 33(12):2223-41. PubMed ID: 25014954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.
    Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A
    Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.