BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26007285)

  • 1. Influence of Cladophora-Quagga Mussel Assemblages on Nearshore Methylmercury Production in Lake Michigan.
    Lepak RF; Krabbenhoft DP; Ogorek JM; Tate MT; Bootsma HA; Hurley JP
    Environ Sci Technol; 2015 Jul; 49(13):7606-13. PubMed ID: 26007285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the transport of sloughed cladophora in the nearshore zone of Lake Michigan.
    Shen C; Liao Q; Bootsma HA; Lafrancois BM
    J Environ Manage; 2022 Dec; 323():116203. PubMed ID: 36108511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury bioaccumulation in a stream network.
    Tsui MT; Finlay JC; Nater EA
    Environ Sci Technol; 2009 Sep; 43(18):7016-22. PubMed ID: 19806736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels.
    Fera SA; Rennie MD; Dunlop ES
    Ecology; 2017 Jun; 98(6):1681-1692. PubMed ID: 28369860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes.
    Chun CL; Ochsner U; Byappanahalli MN; Whitman RL; Tepp WH; Lin G; Johnson EA; Peller J; Sadowsky MJ
    Environ Sci Technol; 2013 Mar; 47(6):2587-94. PubMed ID: 23421373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dominance shift from the zebra mussel to the invasive quagga mussel may alter the trophic transfer of metals.
    Matthews J; Schipper AM; Hendriks AJ; Yen Le TT; Bij de Vaate A; van der Velde G; Leuven RSEW
    Environ Pollut; 2015 Aug; 203():183-190. PubMed ID: 25910461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury concentrations in Quagga Mussels, Dreissena bugensis, from Lakes Mead, Mohave and Havasu.
    Mueting SA; Gerstenberger SL
    Bull Environ Contam Toxicol; 2010 Apr; 84(4):497-501. PubMed ID: 20224976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebra or quagga mussel dominance depends on trade-offs between growth and defense-Field support from Onondaga Lake, NY.
    Rudstam LG; Gandino CJ
    PLoS One; 2020; 15(6):e0235387. PubMed ID: 32598353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do invasive mussels restrict offshore phosphorus transport in Lake Huron?
    Cha Y; Stow CA; Nalepa TF; Reckhow KH
    Environ Sci Technol; 2011 Sep; 45(17):7226-31. PubMed ID: 21812427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial profiles of perfluoroalkyl substances and mercury in fish from northern Lake Victoria, East Africa.
    Arinaitwe K; Koch A; Taabu-Munyaho A; Marien K; Reemtsma T; Berger U
    Chemosphere; 2020 Dec; 260():127536. PubMed ID: 32683018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury in the Mackenzie River delta and estuary: concentrations and fluxes during open-water conditions.
    Graydon JA; Emmerton CA; Lesack LF; Kelly EN
    Sci Total Environ; 2009 Apr; 407(8):2980-8. PubMed ID: 19215970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement of synthetic organic compounds in the food web after the introduction of invasive quagga mussels (Dreissena bugensis) in Lake Mead, Nevada and Arizona, USA.
    Goodbred S; Rosen MR; Patiño R; Alvarez D; Echols K; King K; Umek J
    Sci Total Environ; 2021 Jan; 752():141845. PubMed ID: 32892044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan.
    Ishii S; Yan T; Shively DA; Byappanahalli MN; Whitman RL; Sadowsky MJ
    Appl Environ Microbiol; 2006 Jul; 72(7):4545-53. PubMed ID: 16820442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan.
    Whitman RL; Shively DA; Pawlik H; Nevers MB; Byappanahalli MN
    Appl Environ Microbiol; 2003 Aug; 69(8):4714-9. PubMed ID: 12902262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY.
    Matthews DA; Babcock DB; Nolan JG; Prestigiacomo AR; Effler SW; Driscoll CT; Todorova SG; Kuhr KM
    Environ Res; 2013 Aug; 125():52-60. PubMed ID: 23683521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High methylmercury uptake by green algae in Lake Titicaca: Potential implications for remediation.
    Quiroga-Flores R; Guédron S; Achá D
    Ecotoxicol Environ Saf; 2021 Jan; 207():111256. PubMed ID: 32920312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nearshore benthic algae in the Lake Michigan silica cycle.
    Berges JA; Driskill AM; Guinn EJ; Pokrzywinski K; Quinlan J; von Korff B; Young EB
    PLoS One; 2021; 16(8):e0256838. PubMed ID: 34437648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton.
    Klaus JE; Hammerschmidt CR; Costello DM; Burton GA
    Environ Toxicol Chem; 2016 Jul; 35(7):1759-65. PubMed ID: 26636557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Will the Displacement of Zebra Mussels by Quagga Mussels Increase Water Clarity in Shallow Lakes during Summer? Results from a Mesocosm Experiment.
    Mei X; Zhang X; Kassam SS; Rudstam LG
    PLoS One; 2016; 11(12):e0168494. PubMed ID: 28005940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.