These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26007319)

  • 1. Stabilization of fullerene-like boron cages by transition metal encapsulation.
    Lv J; Wang Y; Zhang L; Lin H; Zhao J; Ma Y
    Nanoscale; 2015 Jun; 7(23):10482-9. PubMed ID: 26007319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of manganese doping on the structure evolution of small-sized boron clusters.
    Zhao L; Qu X; Wang Y; Lv J; Zhang L; Hu Z; Gu G; Ma Y
    J Phys Condens Matter; 2017 Jul; 29(26):265401. PubMed ID: 28481215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B38: an all-boron fullerene analogue.
    Lv J; Wang Y; Zhu L; Ma Y
    Nanoscale; 2014 Oct; 6(20):11692-6. PubMed ID: 24993287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endohedrally Doped Cage Clusters.
    Zhao J; Du Q; Zhou S; Kumar V
    Chem Rev; 2020 Sep; 120(17):9021-9163. PubMed ID: 32865417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure evolution of chromium-doped boron clusters: toward the formation of endohedral boron cages.
    Shao X; Qu X; Liu S; Yang L; Yang J; Liu X; Zhong X; Sun S; Vaitheeswaran G; Lv J
    RSC Adv; 2019 Jan; 9(5):2870-2876. PubMed ID: 35520514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actinide-doped boron clusters: from borophenes to borospherenes.
    Zhang NX; Wang CZ; Lan JH; Wu QY; Chai ZF; Shi WQ
    Phys Chem Chem Phys; 2022 Dec; 24(48):29705-29711. PubMed ID: 36453525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endohedral metallofullerenes based on spherical I(h)-C(80) cage: molecular structures and paramagnetic properties.
    Wang T; Wang C
    Acc Chem Res; 2014 Feb; 47(2):450-8. PubMed ID: 24328037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.
    Sergeeva AP; Popov IA; Piazza ZA; Li WL; Romanescu C; Wang LS; Boldyrev AI
    Acc Chem Res; 2014 Apr; 47(4):1349-58. PubMed ID: 24661097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boronyl chemistry: the BO group as a new ligand in gas-phase clusters and synthetic compounds.
    Zhai HJ; Chen Q; Bai H; Li SD; Wang LS
    Acc Chem Res; 2014 Aug; 47(8):2435-45. PubMed ID: 24915198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Keeping the ball rolling: fullerene-like molecular clusters.
    Kong XJ; Long LS; Zheng Z; Huang RB; Zheng LS
    Acc Chem Res; 2010 Feb; 43(2):201-9. PubMed ID: 19764756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonstandard cages in the formation process of methane clathrate: stability, structure, and spectroscopic implications from first-principles.
    Tang L; Su Y; Liu Y; Zhao J; Qiu R
    J Chem Phys; 2012 Jun; 136(22):224508. PubMed ID: 22713058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B(80) and other medium-sized boron clusters: core-shell structures, not hollow cages.
    Zhao J; Wang L; Li F; Chen Z
    J Phys Chem A; 2010 Sep; 114(37):9969-72. PubMed ID: 20695630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endohedral metal atoms in pristine and functionalized fullerene cages.
    Yamada M; Akasaka T; Nagase S
    Acc Chem Res; 2010 Jan; 43(1):92-102. PubMed ID: 19728726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds.
    Romanescu C; Galeev TR; Li WL; Boldyrev AI; Wang LS
    Acc Chem Res; 2013 Feb; 46(2):350-8. PubMed ID: 23210660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of golden cages by encapsulation of a single transition metal atom.
    Li HF; Wang HQ
    R Soc Open Sci; 2018 Jan; 5(1):171019. PubMed ID: 29410813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80).
    Yoo S; Shao N; Zeng XC
    J Chem Phys; 2008 Mar; 128(10):104316. PubMed ID: 18345897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The boron conundrum: which principles underlie the formation of large hollow boron cages?
    Muya JT; Lijnen E; Nguyen MT; Ceulemans A
    Chemphyschem; 2013 Feb; 14(2):346-63. PubMed ID: 23345038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the structures and bonding of size-selected boron and doped-boron clusters.
    Jian T; Chen X; Li SD; Boldyrev AI; Li J; Wang LS
    Chem Soc Rev; 2019 Jul; 48(13):3550-3591. PubMed ID: 31120469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B14: an all-boron fullerene.
    Cheng L
    J Chem Phys; 2012 Mar; 136(10):104301. PubMed ID: 22423832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures, stabilities and aromatic properties of endohedrally transition metal doped boron clusters M@B
    Celaya CA; Buendía F; Miralrio A; Paz-Borbón LO; Beltran M; Nguyen MT; Sansores LE
    Phys Chem Chem Phys; 2020 Apr; 22(15):8077-8087. PubMed ID: 32242200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.