BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2600737)

  • 1. Mel- mutants of Wangiella dermatitidis in mice: evaluation of multiple mouse and fungal strains.
    Dixon DM; Polak A; Conner GW
    J Med Vet Mycol; 1989; 27(5):335-41. PubMed ID: 2600737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenicity and virulence of wild-type and melanin-deficient Wangiella dermatitidis.
    Dixon DM; Polak A; Szaniszlo PJ
    J Med Vet Mycol; 1987 Apr; 25(2):97-106. PubMed ID: 3598824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanized and non-melanized multicellular form mutants of Wangiella dermatitidis in mice: mortality and histopathology studies.
    Dixon DM; Migliozzi J; Cooper CR; Solis O; Breslin B; Szaniszlo PJ
    Mycoses; 1992; 35(1-2):17-21. PubMed ID: 1406785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invasive hyphal growth in Wangiella dermatitidis is induced by stab inoculation and shows dependence upon melanin biosynthesis.
    Brush L; Money NP
    Fungal Genet Biol; 1999 Dec; 28(3):190-200. PubMed ID: 10669584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis.
    Feng B; Wang X; Hauser M; Kaufmann S; Jentsch S; Haase G; Becker JM; Szaniszlo PJ
    Infect Immun; 2001 Mar; 69(3):1781-94. PubMed ID: 11179356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WdChs2p, a class I chitin synthase, together with WdChs3p (class III) contributes to virulence in Wangiella (Exophiala) dermatitidis.
    Wang Z; Zheng L; Liu H; Wang Q; Hauser M; Kauffman S; Becker JM; Szaniszlo PJ
    Infect Immun; 2001 Dec; 69(12):7517-26. PubMed ID: 11705928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental infection of mice by Fonsecaea pedrosoi and Wangiella dermatitidis.
    Polak A
    Sabouraudia; 1984; 22(2):167-9. PubMed ID: 6539507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental infection with Scedosporium inflatum.
    Cano J; Guarro J; Mayayo E; Fernandez-Ballart J
    J Med Vet Mycol; 1992; 30(6):413-20. PubMed ID: 1287160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exophiala dermatitidis isolates from various sources: using alternative invertebrate host organisms (Caenorhabditis elegans and Galleria mellonella) to determine virulence.
    Olsowski M; Hoffmann F; Hain A; Kirchhoff L; Theegarten D; Todt D; Steinmann E; Buer J; Rath PM; Steinmann J
    Sci Rep; 2018 Aug; 8(1):12747. PubMed ID: 30143674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WdChs1p, a class II chitin synthase, is more responsible than WdChs2p (Class I) for normal yeast reproductive growth in the polymorphic, pathogenic fungus Wangiella (Exophiala) dermatitidis.
    Zheng L; Mendoza L; Wang Z; Liu H; Park C; Kauffman S; Becker JM; Szaniszlo PJ
    Arch Microbiol; 2006 May; 185(4):316-29. PubMed ID: 16544168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WdChs4p, a homolog of chitin synthase 3 in Saccharomyces cerevisiae, alone cannot support growth of Wangiella (Exophiala) dermatitidis at the temperature of infection.
    Wang Z; Zheng L; Hauser M; Becker JM; Szaniszlo PJ
    Infect Immun; 1999 Dec; 67(12):6619-30. PubMed ID: 10569783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative virulence of three species of Exophiala in mice.
    Calvo E; Rodríguez MM; Mariné M; Mayayo E; Pastor FJ; Guarro J
    Med Mycol; 2010 Sep; 48(6):853-7. PubMed ID: 20144129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics of nicotine response in four inbred strains of mice.
    Marks MJ; Burch JB; Collins AC
    J Pharmacol Exp Ther; 1983 Jul; 226(1):291-302. PubMed ID: 6864548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of dose and route of inoculation and of mouse strain on the production of interleukin 2 in mice infected with Mycobacterium lepraemurium.
    Hoffenbach A; Lagrange PH; Bach MA
    Acta Leprol; 1984; 2(2-4):413-20. PubMed ID: 6398600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pentaketide metabolites of melanin synthesis in the dematiaceous fungus Wangiella dermatitidis.
    Geis PA; Wheeler MH; Szaniszlo PJ
    Arch Microbiol; 1984 Apr; 137(4):324-8. PubMed ID: 6539583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.
    Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, characterization, and antifungal susceptibility of melanin-deficient mutants of Scedosporium prolificans.
    Ruiz-Díez B; Martínez-Suárez JV
    Curr Microbiol; 2003 Mar; 46(3):228-32. PubMed ID: 12567248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental phaeohyphomycosis.
    Pospísil L; Bucek J; Moster M; Synek S
    Mycoses; 1990; 33(9-10):469-75. PubMed ID: 2093843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of mouse strain and age on detection of mouse parvovirus 1 by use of serologic testing and polymerase chain reaction analysis.
    Besselsen DG; Wagner AM; Loganbill JK
    Comp Med; 2000 Oct; 50(5):498-502. PubMed ID: 11099132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dactylaria constricta: another dematiaceous fungus with neurotropic potential in mammals.
    Dixon DM; Walsh TJ; Salkin IF; Polak A
    J Med Vet Mycol; 1987 Feb; 25(1):55-8. PubMed ID: 3572683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.