These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26007719)

  • 1. A wavelet-based approach to fall detection.
    Palmerini L; Bagalà F; Zanetti A; Klenk J; Becker C; Cappello A
    Sensors (Basel); 2015 May; 15(5):11575-86. PubMed ID: 26007719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doppler radar fall activity detection using the wavelet transform.
    Su BY; Ho KC; Rantz MJ; Skubic M
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):865-75. PubMed ID: 25376033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial sensing-based pre-impact detection of falls involving near-fall scenarios.
    Lee JK; Robinovitch SN; Park EJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):258-66. PubMed ID: 25252283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet-Based Sit-To-Stand Detection and Assessment of Fall Risk in Older People Using a Wearable Pendant Device.
    Ejupi A; Brodie M; Lord SR; Annegarn J; Redmond SJ; Delbaere K
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1602-1607. PubMed ID: 28113226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor.
    Ejupi A; Galang C; Aziz O; Park EJ; Robinovitch S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2150-2153. PubMed ID: 29060322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets.
    Aziz O; Klenk J; Schwickert L; Chiari L; Becker C; Park EJ; Mori G; Robinovitch SN
    PLoS One; 2017; 12(7):e0180318. PubMed ID: 28678808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
    Wang C; Redmond SJ; Lu W; Stevens MC; Lord SR; Lovell NH
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2729-2736. PubMed ID: 28212076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.
    Zerrouki N; Harrou F; Sun Y; Houacine A
    J Med Syst; 2016 Dec; 40(12):284. PubMed ID: 27796842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining novelty detectors to improve accelerometer-based fall detection.
    Medrano C; Igual R; García-Magariño I; Plaza I; Azuara G
    Med Biol Eng Comput; 2017 Oct; 55(10):1849-1858. PubMed ID: 28251444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of public datasets for acceleration-based fall detection.
    Igual R; Medrano C; Plaza I
    Med Eng Phys; 2015 Sep; 37(9):870-8. PubMed ID: 26233258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal sensor-based fall detection within the domestic environment of elderly people.
    Feldwieser F; Gietzelt M; Goevercin M; Marschollek M; Meis M; Winkelbach S; Wolf KH; Spehr J; Steinhagen-Thiessen E
    Z Gerontol Geriatr; 2014 Dec; 47(8):661-5. PubMed ID: 25112402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fall detection in homes of older adults using the Microsoft Kinect.
    Stone EE; Skubic M
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):290-301. PubMed ID: 24733032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A smart phone-based pocket fall accident detection, positioning, and rescue system.
    Kau LJ; Chen CS
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):44-56. PubMed ID: 25486656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of accelerometer-based fall detection algorithms on real-world falls.
    Bagalà F; Becker C; Cappello A; Chiari L; Aminian K; Hausdorff JM; Zijlstra W; Klenk J
    PLoS One; 2012; 7(5):e37062. PubMed ID: 22615890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects.
    Kangas M; Vikman I; Nyberg L; Korpelainen R; Lindblom J; Jämsä T
    Gait Posture; 2012 Mar; 35(3):500-5. PubMed ID: 22169389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting falls with wearable sensors using machine learning techniques.
    Özdemir AT; Barshan B
    Sensors (Basel); 2014 Jun; 14(6):10691-708. PubMed ID: 24945676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation.
    Liu Y; Redmond SJ; Wang N; Blumenkron F; Narayanan MR; Lovell NH
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21550876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reading from the Black Box: What Sensors Tell Us about Resting and Recovery after Real-World Falls.
    Schwickert L; Klenk J; Zijlstra W; Forst-Gill M; Sczuka K; Helbostad JL; Chiari L; Aminian K; Todd C; Becker C
    Gerontology; 2018; 64(1):90-95. PubMed ID: 28848150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of penetration--aspiration versus healthy swallows using dual-axis swallowing accelerometry signals in dysphagic subjects.
    Sejdić E; Steele CM; Chau T
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1859-66. PubMed ID: 23372074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards automatic detection of falls using wireless sensors.
    Srinivasan S; Han J; Lal D; Gacic A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1379-82. PubMed ID: 18002221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.