These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26007732)

  • 21. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves.
    Araci IE; Quake SR
    Lab Chip; 2012 Aug; 12(16):2803-6. PubMed ID: 22714259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan.
    Li G; Parmar M; Kim D; Lee JB; Lee DW
    Lab Chip; 2014 Jan; 14(1):200-9. PubMed ID: 24193151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles.
    Tian F; Zhang W; Cai L; Li S; Hu G; Cong Y; Liu C; Li T; Sun J
    Lab Chip; 2017 Sep; 17(18):3078-3085. PubMed ID: 28805872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inherently aligned microfluidic electrodes composed of liquid metal.
    So JH; Dickey MD
    Lab Chip; 2011 Mar; 11(5):905-11. PubMed ID: 21264405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic approach for rapid interfacial tension measurement.
    Xu JH; Li SW; Lan WJ; Luo GS
    Langmuir; 2008 Oct; 24(19):11287-92. PubMed ID: 18785714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optics-Free, Non-Contact Measurements of Fluids, Bubbles, and Particles in Microchannels Using Metallic Nano-Islands on Graphene.
    Dhong C; Edmunds SJ; Ramírez J; Kayser LV; Chen F; Jokerst JV; Lipomi DJ
    Nano Lett; 2018 Aug; 18(8):5306-5311. PubMed ID: 30024767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel.
    Jun Kang Y; Ryu J; Lee SJ
    Biomicrofluidics; 2013; 7(4):44106. PubMed ID: 24404040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated microfluidic chip with 40 MHz lead-free transducer for fluid analysis.
    Lee ST; Lam KH; Lei L; Zhang XM; Chan HL
    Rev Sci Instrum; 2011 Feb; 82(2):024903. PubMed ID: 21361626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper.
    Glavan AC; Martinez RV; Maxwell EJ; Subramaniam AB; Nunes RM; Soh S; Whitesides GM
    Lab Chip; 2013 Aug; 13(15):2922-30. PubMed ID: 23719764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A viscosity-dependent affinity sensor for continuous monitoring of glucose in biological fluids.
    Boss C; Meurville E; Sallese JM; Ryser P
    Biosens Bioelectron; 2011 Dec; 30(1):223-8. PubMed ID: 21996323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis and Transformations of Room-Temperature Liquid Metal Interfaces - A Closer Look through Interfacial Tension.
    Handschuh-Wang S; Chen Y; Zhu L; Zhou X
    Chemphyschem; 2018 Jul; 19(13):1584-1592. PubMed ID: 29539243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A cartridge based sensor array platform for multiple coagulation measurements from plasma.
    Cakmak O; Ermek E; Kilinc N; Bulut S; Baris I; Kavakli IH; Yaralioglu GG; Urey H
    Lab Chip; 2015 Jan; 15(1):113-20. PubMed ID: 25353144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator.
    Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite.
    Han YL; Wang W; Hu J; Huang G; Wang S; Lee WG; Lu TJ; Xu F
    Lab Chip; 2013 Dec; 13(24):4745-9. PubMed ID: 24172608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic Viscometer Using a Suspending Micromembrane for Measurement of Biosamples.
    Liu L; Hu D; Lam RHW
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Packaging commercial CMOS chips for lab on a chip integration.
    Datta-Chaudhuri T; Abshire P; Smela E
    Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon nanotube-sensor-integrated microfluidic platform for real-time chemical concentration detection.
    Yang L; Li M; Qu Y; Dong Z; Li WJ
    Electrophoresis; 2009 Sep; 30(18):3198-205. PubMed ID: 19722205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical detection of acute renal disease biomarker by Galinstan nanoparticles interfaced to bilayer polymeric structured dirhenium heptoxide film.
    Das M; Chakraborty T; Yu Lin C; Fong Lei K; Haur Kao C
    Bioelectrochemistry; 2022 Oct; 147():108194. PubMed ID: 35752029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator.
    Dang VB; Kim SJ
    Electrophoresis; 2017 Apr; 38(7):977-982. PubMed ID: 27987226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.