These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 26008220)
1. Multifunctional Gadolinium-Doped Manganese Carbonate Nanoparticles for Targeted MR/Fluorescence Imaging of Tiny Brain Gliomas. Shao C; Li S; Gu W; Gong N; Zhang J; Chen N; Shi X; Ye L Anal Chem; 2015 Jun; 87(12):6251-7. PubMed ID: 26008220 [TBL] [Abstract][Full Text] [Related]
2. Terbium-doped manganese carbonate nanoparticles with intrinsic photoluminescence and magnetic resonance imaging capacity. Liu K; Shi X; Wang T; Ai P; Gu W; Ye L J Colloid Interface Sci; 2017 Jan; 485():25-31. PubMed ID: 27639171 [TBL] [Abstract][Full Text] [Related]
3. Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. Chen N; Shao C; Qu Y; Li S; Gu W; Zheng T; Ye L; Yu C ACS Appl Mater Interfaces; 2014 Nov; 6(22):19850-7. PubMed ID: 25335117 [TBL] [Abstract][Full Text] [Related]
4. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. Chen N; Shao C; Li S; Wang Z; Qu Y; Gu W; Yu C; Ye L J Colloid Interface Sci; 2015 Nov; 457():27-34. PubMed ID: 26151564 [TBL] [Abstract][Full Text] [Related]
5. MnO nanoparticles with unique excitation-dependent fluorescence for multicolor cellular imaging and MR imaging of brain glioma. Lai J; Wang T; Wang H; Shi F; Gu W; Ye L Mikrochim Acta; 2018 Apr; 185(4):244. PubMed ID: 29610993 [TBL] [Abstract][Full Text] [Related]
6. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd(3+) Strategy for in Vivo Tumor-Targeted Imaging. Du H; Yu J; Guo D; Yang W; Wang J; Zhang B Langmuir; 2016 Feb; 32(4):1155-65. PubMed ID: 26740341 [TBL] [Abstract][Full Text] [Related]
7. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticles for multi-modality cancer diagnosis: Simple protocol for self-assembly of gold nanoclusters mediated by gadolinium ions. Hou W; Xia F; Alfranca G; Yan H; Zhi X; Liu Y; Peng C; Zhang C; de la Fuente JM; Cui D Biomaterials; 2017 Mar; 120():103-114. PubMed ID: 28049064 [TBL] [Abstract][Full Text] [Related]
9. Synergy between surface and core entrapped metals in a mixed manganese-gadolinium nanocolloid affords safer MR imaging of sparse biomarkers. Wang K; Pan D; Schmieder AH; Senpan A; Hourcade DE; Pham CT; Mitchell LM; Caruthers SD; Cui G; Wickline SA; Shen B; Lanza GM Nanomedicine; 2015 Apr; 11(3):601-9. PubMed ID: 25652900 [TBL] [Abstract][Full Text] [Related]
10. Development of fluorescence/MR dual-modal manganese-nitrogen-doped carbon nanosheets as an efficient contrast agent for targeted ovarian carcinoma imaging. Han C; Xie T; Wang K; Jin S; Li K; Dou P; Yu N; Xu K J Nanobiotechnology; 2020 Nov; 18(1):175. PubMed ID: 33256741 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of methotrexate-conjugated gadolinium(III) for cancer diagnosis and treatment. Xu D; Lu ST; Li YS; Baidya A; Mei H; He Y; Wu B Drug Des Devel Ther; 2018; 12():3301-3309. PubMed ID: 30323562 [TBL] [Abstract][Full Text] [Related]
12. Facile Synthesis of Gd-Cu-In-S/ZnS Bimodal Quantum Dots with Optimized Properties for Tumor Targeted Fluorescence/MR In Vivo Imaging. Yang W; Guo W; Gong X; Zhang B; Wang S; Chen N; Yang W; Tu Y; Fang X; Chang J ACS Appl Mater Interfaces; 2015 Aug; 7(33):18759-68. PubMed ID: 26257133 [TBL] [Abstract][Full Text] [Related]
13. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T₁-weighted MR imaging of gliomas. Luo Y; Yang J; Yan Y; Li J; Shen M; Zhang G; Mignani S; Shi X Nanoscale; 2015 Sep; 7(34):14538-46. PubMed ID: 26260703 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Gd/Eu-codoped SmPO4 nanorods for dual-modal magnetic resonance and bio-optical imaging. Wu Z; Huang Z; Yin G; Wang L; Gao F J Colloid Interface Sci; 2016 Mar; 466():1-11. PubMed ID: 26692538 [TBL] [Abstract][Full Text] [Related]
15. A new class of Gd-based DO3A-ethylamine-derived targeted contrast agents for MR and optical imaging. Mishra A; Pfeuffer J; Mishra R; Engelmann J; Mishra AK; Ugurbil K; Logothetis NK Bioconjug Chem; 2006; 17(3):773-80. PubMed ID: 16704217 [TBL] [Abstract][Full Text] [Related]
16. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. Xiao N; Gu W; Wang H; Deng Y; Shi X; Ye L J Colloid Interface Sci; 2014 Mar; 417():159-65. PubMed ID: 24407672 [TBL] [Abstract][Full Text] [Related]
17. Facile Synthesis of Gadolinium Chelate-Conjugated Polymer Nanoparticles for Fluorescence/Magnetic Resonance Dual-Modal Imaging. Pan Y; Chen W; Yang J; Zheng J; Yang M; Yi C Anal Chem; 2018 Feb; 90(3):1992-2000. PubMed ID: 29293314 [TBL] [Abstract][Full Text] [Related]
18. Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging. Zhang B; Yang W; Yu J; Guo W; Wang J; Liu S; Xiao Y; Shi D Adv Healthc Mater; 2017 Feb; 6(4):. PubMed ID: 28004887 [TBL] [Abstract][Full Text] [Related]
19. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Chen Q; Wang H; Liu H; Wen S; Peng C; Shen M; Zhang G; Shi X Anal Chem; 2015 Apr; 87(7):3949-56. PubMed ID: 25768040 [TBL] [Abstract][Full Text] [Related]
20. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Du F; Zhang L; Zhang L; Zhang M; Gong A; Tan Y; Miao J; Gong Y; Sun M; Ju H; Wu C; Zou S Biomaterials; 2017 Mar; 121():109-120. PubMed ID: 28086179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]