These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2600833)

  • 1. A novel type of delayed tension reduction observed in rat motor units after intense activity.
    Lännergren J; Larsson L; Westerblad H
    J Physiol; 1989 May; 412():267-76. PubMed ID: 2600833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum tension and force-velocity properties of fatigued, single Xenopus muscle fibres studied by caffeine and high K+.
    Lännergren J; Westerblad H
    J Physiol; 1989 Feb; 409():473-90. PubMed ID: 2585298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle.
    Lännergren J; Westerblad H
    J Physiol; 1991 Mar; 434():307-22. PubMed ID: 1902515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis.
    Lee JA; Westerblad H; Allen DG
    J Physiol; 1991 Feb; 433():307-26. PubMed ID: 1841942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force and membrane potential during and after fatiguing, intermittent tetanic stimulation of single Xenopus muscle fibres.
    Westerblad H; Lännergren J
    Acta Physiol Scand; 1986 Nov; 128(3):369-78. PubMed ID: 3788615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonuniform fatigue characteristics of slow-twitch motor units activated at a fixed percentage of their maximum tetanic tension.
    Cope TC; Webb CB; Yee AK; Botterman BR
    J Neurophysiol; 1991 Nov; 66(5):1483-92. PubMed ID: 1765789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.
    Westerblad H; Allen DG
    J Gen Physiol; 1991 Sep; 98(3):615-35. PubMed ID: 1761971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors causing difference in force output among motor units in the rat medial gastrocnemius muscle.
    Kanda K; Hashizume K
    J Physiol; 1992 Mar; 448():677-95. PubMed ID: 1593483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis.
    Allen DG; Lee JA; Westerblad H
    J Physiol; 1989 Aug; 415():433-58. PubMed ID: 2517988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single motor unit and fiber action potentials during fatigue.
    Sandercock TG; Faulkner JA; Albers JW; Abbrecht PH
    J Appl Physiol (1985); 1985 Apr; 58(4):1073-9. PubMed ID: 3988664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of low-frequency stimulation on the tension-frequency relations of fast-twitch motor units in the cat.
    Powers RK; Binder MD
    J Neurophysiol; 1991 Sep; 66(3):905-18. PubMed ID: 1753294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sag during unfused tetanic contractions in rat triceps surae motor units.
    Carp JS; Herchenroder PA; Chen XY; Wolpaw JR
    J Neurophysiol; 1999 Jun; 81(6):2647-61. PubMed ID: 10368385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slowing of relaxation during fatigue in single mouse muscle fibres.
    Westerblad H; Lännergren J
    J Physiol; 1991 Mar; 434():323-36. PubMed ID: 1902516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres.
    Westerblad H; Lännergren J
    Acta Physiol Scand; 1988 May; 133(1):83-9. PubMed ID: 3227907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor-unit stimulation patterns during fatiguing contractions of constant tension.
    Botterman BR; Cope TC
    J Neurophysiol; 1988 Oct; 60(4):1198-214. PubMed ID: 3193153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyographic and contractile properties of rabbit masseter motor units during fatiguing stimulation.
    Kwa SH; Weijs WA; Van Eijden TM
    Exp Brain Res; 2003 Mar; 149(1):96-106. PubMed ID: 12592507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue from high- and low-frequency muscle stimulation: role of sarcolemma action potentials.
    Metzger JM; Fitts RH
    Exp Neurol; 1986 Aug; 93(2):320-33. PubMed ID: 3732473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible increase in light scattering during recovery from fatigue in Xenopus muscle fibres.
    Westerblad H; Lännergren J
    Acta Physiol Scand; 1990 Nov; 140(3):429-35. PubMed ID: 2082708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.