These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2600887)

  • 41. Equivalent-rectangular bandwidth of single units in the anaesthetized guinea-pig ventral cochlear nucleus.
    Sayles M; Winter IM
    Hear Res; 2010 Apr; 262(1-2):26-33. PubMed ID: 20123119
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural correlations in the dorsal cochlear nucleus: pairs of units with similar response properties.
    Voigt HF; Young ED
    J Neurophysiol; 1988 Mar; 59(3):1014-32. PubMed ID: 3367194
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Parham K; Sirianni JG; Chang SO
    J Acoust Soc Am; 1991 Jun; 89(6):2804-17. PubMed ID: 1918624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lateral suppression and inhibition in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 Feb; 71(2):493-514. PubMed ID: 8176421
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS).
    Curthoys IS; Vulovic V; Burgess AM; Sokolic L; Goonetilleke SC
    Hear Res; 2016 Jan; 331():131-43. PubMed ID: 26626360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons.
    Reyes AD; Rubel EW; Spain WJ
    J Neurosci; 1996 Feb; 16(3):993-1007. PubMed ID: 8558268
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sound localization in anurans. I. Evidence of binaural interaction in dorsal medullary nucleus of bullfrogs (Rana catesbeiana).
    Feng AS; Capranica RR
    J Neurophysiol; 1976 Jul; 39(4):871-81. PubMed ID: 1085815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discharge patterns of cochlear ganglion neurons in the chicken.
    Salvi RJ; Saunders SS; Powers NL; Boettcher FA
    J Comp Physiol A; 1992 Feb; 170(2):227-41. PubMed ID: 1583607
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons.
    Spirou GA; Brownell WE; Zidanic M
    J Neurophysiol; 1990 May; 63(5):1169-90. PubMed ID: 2358868
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency.
    Joris PX; Carney LH; Smith PH; Yin TC
    J Neurophysiol; 1994 Mar; 71(3):1022-36. PubMed ID: 8201399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An electrical tuning mechanism in turtle cochlear hair cells.
    Crawford AC; Fettiplace R
    J Physiol; 1981 Mar; 312():377-412. PubMed ID: 7265000
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neural encoding of single-formant stimuli in the cat. II. Responses of anteroventral cochlear nucleus units.
    Wang X; Sachs MB
    J Neurophysiol; 1994 Jan; 71(1):59-78. PubMed ID: 8158242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coding of free field intensity in the auditory midbrain of the leopard frog. I. Results for tonal stimuli.
    Eggermont JJ
    Hear Res; 1989 Jun; 40(1-2):147-65. PubMed ID: 2788638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tuning properties of turtle auditory nerve fibers: evidence for suppression and adaptation.
    Sneary MG; Lewis ER
    Hear Res; 2007 Jun; 228(1-2):22-30. PubMed ID: 17331685
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth.
    Palmer AR; Jiang D; Marshall DH
    J Neurophysiol; 1996 Feb; 75(2):780-94. PubMed ID: 8714652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers.
    Rhode WS; Smith PH
    Hear Res; 1985 May; 18(2):159-68. PubMed ID: 2995298
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal coding of 200% amplitude modulated signals in the ventral cochlear nucleus of cat.
    Rhode WS
    Hear Res; 1994 Jun; 77(1-2):43-68. PubMed ID: 7928738
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dorsal cochlear nucleus single neurons can enhance temporal processing capabilities in background noise.
    Frisina RD; Walton JP; Karcich KJ
    Exp Brain Res; 1994; 102(1):160-4. PubMed ID: 7895792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.