These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 26009270)

  • 1. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology.
    Lee TH; Hirst DJ; Aguilar MI
    Biochim Biophys Acta; 2015 Sep; 1848(9):1868-85. PubMed ID: 26009270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure.
    Lee TH; Hirst DJ; Kulkarni K; Del Borgo MP; Aguilar MI
    Chem Rev; 2018 Jun; 118(11):5392-5487. PubMed ID: 29793341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions.
    Mozsolits H; Aguilar MI
    Biopolymers; 2002; 66(1):3-18. PubMed ID: 12228917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling.
    Mozsolits H; Thomas WG; Aguilar MI
    J Pept Sci; 2003 Feb; 9(2):77-89. PubMed ID: 12630693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis.
    Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI
    Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1.
    Lee TH; Hall KN; Swann MJ; Popplewell JF; Unabia S; Park Y; Hahm KS; Aguilar MI
    Biochim Biophys Acta; 2010 Mar; 1798(3):544-57. PubMed ID: 20100457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of G-Protein Coupled Receptor Signaling in Membrane Environment by Plasmon Waveguide Resonance.
    Alves ID; Lecomte S
    Acc Chem Res; 2019 Apr; 52(4):1059-1067. PubMed ID: 30865424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving the kinetics of lipid, protein and peptide diffusion in membranes.
    Sanderson JM
    Mol Membr Biol; 2012 Aug; 29(5):118-43. PubMed ID: 22582994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into functional lipid-protein interactions in secondary transporters.
    Koshy C; Ziegler C
    Biochim Biophys Acta; 2015 Mar; 1850(3):476-87. PubMed ID: 24859688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance spectroscopy: a new lead in studying the membrane binding of amyloidogenic transthyretin.
    Hou X; Small DH; Aguilar MI
    Methods Mol Biol; 2011; 752():215-28. PubMed ID: 21713640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of lipid membrane surfaces for molecular interaction studies by surface plasmon resonance biosensors.
    Besenicar MP; Anderluh G
    Methods Mol Biol; 2010; 627():191-200. PubMed ID: 20217622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of reversible membrane destabilisation induced by antimicrobial peptides derived from Australian frogs.
    Lee TH; Heng C; Separovic F; Aguilar MI
    Biochim Biophys Acta; 2014 Sep; 1838(9):2205-15. PubMed ID: 24593995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors.
    Daghestani HN; Day BW
    Sensors (Basel); 2010; 10(11):9630-46. PubMed ID: 22163431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces.
    Rodrigo D; Tittl A; Ait-Bouziad N; John-Herpin A; Limaj O; Kelly C; Yoo D; Wittenberg NJ; Oh SH; Lashuel HA; Altug H
    Nat Commun; 2018 Jun; 9(1):2160. PubMed ID: 29867181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-waveguide resonance spectroscopy studies of lateral segregation in solid-supported proteolipid bilayers.
    Salamon Z; Devanathan S; Tollin G
    Methods Mol Biol; 2007; 398():159-78. PubMed ID: 18214380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peeking into a secret world of pore-forming toxins: membrane binding processes studied by surface plasmon resonance.
    Anderluh G; Macek P; Lakey JH
    Toxicon; 2003 Sep; 42(3):225-8. PubMed ID: 14559072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Optical surface plasmon resonance biosensors in molecular fishing].
    Ivanov AS; Medvedev AE
    Biomed Khim; 2015; 61(2):231-8. PubMed ID: 25978389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.