BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 26009541)

  • 1. The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle.
    Ríos E; Figueroa L; Manno C; Kraeva N; Riazi S
    J Gen Physiol; 2015 Jun; 145(6):459-74. PubMed ID: 26009541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of ion-regulatory membrane proteins of excitation-contraction coupling and relaxation in inherited muscle diseases.
    Froemming GR; Ohlendieck K
    Front Biosci; 2001 Jan; 6():D65-74. PubMed ID: 11145921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin.
    Wei L; Gallant EM; Dulhunty AF; Beard NA
    Int J Biochem Cell Biol; 2009 Nov; 41(11):2214-24. PubMed ID: 19398037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca(2+) signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin.
    Beard NA; Wei L; Dulhunty AF
    Eur Biophys J; 2009 Dec; 39(1):27-36. PubMed ID: 19434403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sarcoplasmic reticulum Ca2+ release in neonatal rat cardiac myocytes.
    Gergs U; Kirchhefer U; Buskase J; Kiele-Dunsche K; Buchwalow IB; Jones LR; Schmitz W; Traub O; Neumann J
    J Mol Cell Cardiol; 2011 Nov; 51(5):682-8. PubMed ID: 21871897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal Excitation-Contraction Coupling and Calcium Homeostasis in Myopathies and Cardiomyopathies.
    Schartner V; Laporte J; Böhm J
    J Neuromuscul Dis; 2019; 6(3):289-305. PubMed ID: 31356215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ryanodine receptor channelopathies.
    Benkusky NA; Farrell EF; Valdivia HH
    Biochem Biophys Res Commun; 2004 Oct; 322(4):1280-5. PubMed ID: 15336975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between Triadin and Calsequestrin in the Pathogenesis of CPVT in the Mouse.
    Cacheux M; Fauconnier J; Thireau J; Osseni A; Brocard J; Roux-Buisson N; Brocard J; Fauré J; Lacampagne A; Marty I
    Mol Ther; 2020 Jan; 28(1):171-179. PubMed ID: 31607542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle.
    Dulhunty AF; Haarmann CS; Green D; Laver DR; Board PG; Casarotto MG
    Prog Biophys Mol Biol; 2002; 79(1-3):45-75. PubMed ID: 12225776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling.
    Prosser BL; Wright NT; Hernãndez-Ochoa EO; Varney KM; Liu Y; Olojo RO; Zimmer DB; Weber DJ; Schneider MF
    J Biol Chem; 2008 Feb; 283(8):5046-57. PubMed ID: 18089560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The junctophilin family of proteins: from bench to bedside.
    Landstrom AP; Beavers DL; Wehrens XH
    Trends Mol Med; 2014 Jun; 20(6):353-62. PubMed ID: 24636942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of excitation-contraction coupling components in human extraocular muscles.
    Sekulic-Jablanovic M; Palmowski-Wolfe A; Zorzato F; Treves S
    Biochem J; 2015 Feb; 466(1):29-36. PubMed ID: 25387602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triadin regulates cardiac muscle couplon structure and microdomain Ca(2+) signalling: a path towards ventricular arrhythmias.
    Chopra N; Knollmann BC
    Cardiovasc Res; 2013 May; 98(2):187-91. PubMed ID: 23396608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular properties of excitation-contraction coupling proteins in infant and adult human heart tissues.
    Jung DH; Lee CJ; Suh CK; You HJ; Kim DH
    Mol Cells; 2005 Aug; 20(1):51-6. PubMed ID: 16258241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization and molecular cloning of cardiac triadin.
    Guo W; Jorgensen AO; Jones LR; Campbell KP
    J Biol Chem; 1996 Jan; 271(1):458-65. PubMed ID: 8550602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations of excitation-contraction coupling and excitation coupled Ca(2+) entry in human myotubes carrying CAV3 mutations linked to rippling muscle.
    Ullrich ND; Fischer D; Kornblum C; Walter MC; Niggli E; Zorzato F; Treves S
    Hum Mutat; 2011 Mar; 32(3):309-17. PubMed ID: 21294223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.