These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26010082)

  • 21. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.
    Le Bras D; Strømme M; Mihranyan A
    J Phys Chem B; 2015 May; 119(18):5911-7. PubMed ID: 25885570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects.
    Thomas P; Duolikun T; Rumjit NP; Moosavi S; Lai CW; Bin Johan MR; Fen LB
    J Mech Behav Biomed Mater; 2020 Oct; 110():103884. PubMed ID: 32957191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water.
    Lindh J; Carlsson DO; Strømme M; Mihranyan A
    Biomacromolecules; 2014 May; 15(5):1928-32. PubMed ID: 24708448
    [No Abstract]   [Full Text] [Related]  

  • 25. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW; Lee HV
    Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications.
    Meftahi A; Samyn P; Geravand SA; Khajavi R; Alibkhshi S; Bechelany M; Barhoum A
    Carbohydr Polym; 2022 Feb; 278():118956. PubMed ID: 34973772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocrystalline cellulose with various contents of sulfate groups.
    Voronova MI; Surov OV; Zakharov AG
    Carbohydr Polym; 2013 Oct; 98(1):465-9. PubMed ID: 23987369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physicochemical Properties of Nanocellulose Isolated from Cotton Stalk Waste.
    Li M; He B; Chen Y; Zhao L
    ACS Omega; 2021 Oct; 6(39):25162-25169. PubMed ID: 34632175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.
    Korhonen JT; Hiekkataipale P; Malm J; Karppinen M; Ikkala O; Ras RH
    ACS Nano; 2011 Mar; 5(3):1967-74. PubMed ID: 21361349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of nanocellulose gels and films from invasive tree species.
    Almeida RO; Ramos A; Alves L; Potsi E; Ferreira PJT; Carvalho MGVS; Rasteiro MG; Gamelas JAF
    Int J Biol Macromol; 2021 Oct; 188():1003-1011. PubMed ID: 34371043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bottom-up assembly of nanocellulose structures.
    Niinivaara E; Cranston ED
    Carbohydr Polym; 2020 Nov; 247():116664. PubMed ID: 32829792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.
    Chen W; Li Q; Wang Y; Yi X; Zeng J; Yu H; Liu Y; Li J
    ChemSusChem; 2014 Jan; 7(1):154-61. PubMed ID: 24420495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscoelastic Properties of Core-Shell-Structured, Hemicellulose-Rich Nanofibrillated Cellulose in Dispersion and Wet-Film States.
    Tanaka R; Saito T; Hänninen T; Ono Y; Hakalahti M; Tammelin T; Isogai A
    Biomacromolecules; 2016 Jun; 17(6):2104-11. PubMed ID: 27142723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of surface charge density on the ice recrystallization inhibition activity of nanocelluloses.
    Li T; Zhong Q; Zhao B; Lenaghan S; Wang S; Wu T
    Carbohydr Polym; 2020 Apr; 234():115863. PubMed ID: 32070502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating mucoadhesion properties of three types of nanocellulose in the gastrointestinal tract in vitro and ex vivo.
    Lin YJ; Shatkin JA; Kong F
    Carbohydr Polym; 2019 Apr; 210():157-166. PubMed ID: 30732748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions.
    Albornoz-Palma G; Betancourt F; Mendonça RT; Chinga-Carrasco G; Pereira M
    Carbohydr Polym; 2020 Feb; 230():115588. PubMed ID: 31887943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colloidal stability of aqueous nanofibrillated cellulose dispersions.
    Fall AB; Lindström SB; Sundman O; Ödberg L; Wågberg L
    Langmuir; 2011 Sep; 27(18):11332-8. PubMed ID: 21834530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents.
    Korhonen JT; Kettunen M; Ras RH; Ikkala O
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1813-6. PubMed ID: 21627309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Key advances in the chemical modification of nanocelluloses.
    Habibi Y
    Chem Soc Rev; 2014 Mar; 43(5):1519-42. PubMed ID: 24316693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of nanocellulose on mechanics and morphology of polyvinyl alcohol xerogels.
    Pramanik R; Ganivada B; Ram F; Shanmuganathan K; Arockiarajan A
    J Mech Behav Biomed Mater; 2019 Feb; 90():275-283. PubMed ID: 30388512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.