These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 26010255)

  • 1. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced electrothermal pumping with thin film resistive heaters.
    Williams SJ
    Electrophoresis; 2013 May; 34(9-10):1400-8. PubMed ID: 23576002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling law analysis of electrohydrodynamics and dielectrophoresis for isomotive dielectrophoresis microfluidic devices.
    Rashed MZ; Green NG; Williams SJ
    Electrophoresis; 2020 Jan; 41(1-2):148-155. PubMed ID: 31677287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joule heating-enabled electrothermal enrichment of nanoparticles in insulator-based dielectrophoretic microdevices.
    Malekanfard A; Liu Z; Song L; Kale A; Zhang C; Yu L; Song Y; Xuan X
    Electrophoresis; 2021 Mar; 42(5):626-634. PubMed ID: 32935875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of Joule heating effects in insulator-based dielectrophoresis microdevices.
    Kale A; Patel S; Hu G; Xuan X
    Electrophoresis; 2013 Mar; 34(5):674-83. PubMed ID: 23192532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications.
    Du E; Manoochehri S
    IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joule heating effects in optimized insulator-based dielectrophoretic devices: An interplay between post geometry and temperature rise.
    Gallo-Villanueva RC; Perez-Gonzalez VH; Cardenas-Benitez B; Jind B; Martinez-Chapa SO; Lapizco-Encinas BH
    Electrophoresis; 2019 May; 40(10):1408-1416. PubMed ID: 30883810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization.
    Matbaechi Ettehad H; Yadav RK; Guha S; Wenger C
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31195725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate.
    Cheng W; Li SZ; Zeng Q; Yu XL; Wang Y; Chan HL; Liu W; Guo SS; Zhao XZ
    Electrophoresis; 2011 Nov; 32(23):3371-7. PubMed ID: 22058049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant dielectrophoresis and electrohydrodynamics for high-sensitivity impedance detection of whole-cell bacteria.
    Couniot N; Francis LA; Flandre D
    Lab Chip; 2015 Aug; 15(15):3183-91. PubMed ID: 26120099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoretic concentrator enhancement based on dielectric poles for continuously flowing samples.
    del Moral Zamora B; Álvarez Azpeitia JM; Oliva Brañas AM; Colomer-Farrarons J; Castellarnau M; Miribel-Català PL; Homs-Corbera A; Juárez A; Samitier J
    Electrophoresis; 2015 Jul; 36(13):1405-13. PubMed ID: 25630478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation.
    Aghilinejad A; Aghaamoo M; Chen X; Xu J
    Electrophoresis; 2018 Mar; 39(5-6):869-877. PubMed ID: 28975645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications.
    Lian M; Islam N; Wu J
    IET Nanobiotechnol; 2007 Jun; 1(3):36-43. PubMed ID: 17506595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ
    Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.