These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 26010474)
1. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. Ren W; Ren G; Teng Y; Li Z; Li L J Hazard Mater; 2015 Oct; 297():286-94. PubMed ID: 26010474 [TBL] [Abstract][Full Text] [Related]
2. A decade of land use contributes to changes in the chemistry, biochemistry and bacterial community structures of soils in the Cerrado. Peixoto RS; Chaer GM; Franco N; Reis Junior FB; Mendes IC; Rosado AS Antonie Van Leeuwenhoek; 2010 Oct; 98(3):403-13. PubMed ID: 20495870 [TBL] [Abstract][Full Text] [Related]
3. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing. Xiong W; Li Z; Liu H; Xue C; Zhang R; Wu H; Li R; Shen Q PLoS One; 2015; 10(8):e0136946. PubMed ID: 26317364 [TBL] [Abstract][Full Text] [Related]
4. Pyrosequencing Reveals Soil Enzyme Activities and Bacterial Communities Impacted by Graphene and Its Oxides. Rong Y; Wang Y; Guan Y; Ma J; Cai Z; Yang G; Zhao X J Agric Food Chem; 2017 Oct; 65(42):9191-9199. PubMed ID: 28949519 [TBL] [Abstract][Full Text] [Related]
5. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Mahmood S; Paton GI; Prosser JI Environ Microbiol; 2005 Sep; 7(9):1349-60. PubMed ID: 16104858 [TBL] [Abstract][Full Text] [Related]
6. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR. Ahn JH; Kim YJ; Kim T; Song HG; Kang C; Ka JO J Microbiol Methods; 2009 Aug; 78(2):216-22. PubMed ID: 19523498 [TBL] [Abstract][Full Text] [Related]
7. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Su JQ; Ding LJ; Xue K; Yao HY; Quensen J; Bai SJ; Wei WX; Wu JS; Zhou J; Tiedje JM; Zhu YG Mol Ecol; 2015 Jan; 24(1):136-50. PubMed ID: 25410123 [TBL] [Abstract][Full Text] [Related]
8. Differential response of archaeal groups to land use change in an acidic red soil. Shen JP; Cao P; Hu HW; He JZ Sci Total Environ; 2013 Sep; 461-462():742-9. PubMed ID: 23774250 [TBL] [Abstract][Full Text] [Related]
9. Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Kemnitz D; Kolb S; Conrad R Environ Microbiol; 2005 Apr; 7(4):553-65. PubMed ID: 15816932 [TBL] [Abstract][Full Text] [Related]
10. Microbial community profiling in cis- and trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis. Olaniran AO; Stafford WH; Cowan DA; Pillay D; Pillay B J Microbiol Biotechnol; 2007 Apr; 17(4):560-70. PubMed ID: 18051265 [TBL] [Abstract][Full Text] [Related]
11. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Campbell BJ; Polson SW; Hanson TE; Mack MC; Schuur EA Environ Microbiol; 2010 Jul; 12(7):1842-54. PubMed ID: 20236166 [TBL] [Abstract][Full Text] [Related]
12. Structural divergence of bacterial communities from functionally similar laboratory-scale vermicomposts assessed by PCR-CE-SSCP. Sen B; Hamelin J; Bru-Adan V; Godon JJ; Chandra TS J Appl Microbiol; 2008 Dec; 105(6):2123-32. PubMed ID: 19120658 [TBL] [Abstract][Full Text] [Related]
13. Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Rodrigues DF; Jaisi DP; Elimelech M Environ Sci Technol; 2013 Jan; 47(1):625-33. PubMed ID: 23205469 [TBL] [Abstract][Full Text] [Related]
14. Effects of graphene oxides on soil enzyme activity and microbial biomass. Chung H; Kim MJ; Ko K; Kim JH; Kwon HA; Hong I; Park N; Lee SW; Kim W Sci Total Environ; 2015 May; 514():307-13. PubMed ID: 25668283 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation. Chikere CB; Surridge K; Okpokwasili GC; Cloete TE Waste Manag Res; 2012 Mar; 30(3):225-36. PubMed ID: 21824988 [TBL] [Abstract][Full Text] [Related]
16. Monitoring the impact of hydrocarbon contamination and nutrient addition on microbial density, activity, and diversity in soil. Taok M; Mundo J; Sarde CO; Schoefs O; Cochet N Can J Microbiol; 2010 Feb; 56(2):145-55. PubMed ID: 20237576 [TBL] [Abstract][Full Text] [Related]
17. Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR. Martin-Laurent F; Piutti S; Hallet S; Wagschal I; Philippot L; Catroux G; Soulas G Pest Manag Sci; 2003 Mar; 59(3):259-68. PubMed ID: 12639042 [TBL] [Abstract][Full Text] [Related]
18. Concentration-dependent effect of photoluminescent carbon dots on the microbial activity of the soil studied by combination methods. Liu W; Yao J; Chai H; Zhao Z; Zhang C; Jin J; Choi MM Environ Toxicol Pharmacol; 2015 Mar; 39(2):857-63. PubMed ID: 25769105 [TBL] [Abstract][Full Text] [Related]
19. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils. Ridgway KP; Marland LA; Harrison AF; Wright J; Young JP; Fitter AH FEMS Microbiol Ecol; 2004 Nov; 50(3):255-63. PubMed ID: 19712365 [TBL] [Abstract][Full Text] [Related]
20. The abundance of functional genes, cbbL, nifH, amoA and apsA, and bacterial community structure of intertidal soil from Arabian Sea. Keshri J; Yousuf B; Mishra A; Jha B Microbiol Res; 2015 Jun; 175():57-66. PubMed ID: 25862282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]